Endophytes: Role and Functions in Crop Health

  • P. Kishore Varma
  • S. Uppala
  • Kiran Pavuluri
  • K. Jaya Chandra
  • M. M. Chapala
  • K. Vijay Krishna KumarEmail author


Plant-microbe interactions is an important concept, and the significance of these interactions on sustainable agriculture is enormous. These interactions can be neutral, commensal, mutualistic, saprophytic, or harmful. Endophytes are beneficial microbes that reside and establish symbiotic relationships with the plants. These beneficial microbes are of either bacterial, fungal, or actinomycete origin. A wide array of beneficial effects are reported with endophytic associations in plants that include bioremediation, herbivory, induced resistance, plant growth promotion, and pest and disease management. Nomenclature of endophytes is generally according to the plant tissue it harbors, such as endophytes of root, shoot, leaf, seed, etc. Our review presents different bacterial and fungal endophytes in plants and their role in improving crop health. The plant growth-promoting (PGP) activities of these endophytes such as production of growth hormones like indoleacetic acid (IAA), gibberellic acid (GA), and cytokinins and phosphate solubilization in different crops by specific endophytes are discussed in detail. Further, specific antagonistic activities of endophytes like induced systemic resistance; production of salicylic acid, siderophores, HCN, cell wall-degrading enzymes, and antimicrobial metabolites including antibiotics; and direct antagonism against different plant pathogens are thoroughly discussed. The preferences of endophytes to different plant parts; their different niches such as roots, shoots, leaves, and whole plants; and specific antagonistic and PGP activities are elaborated in detail. Other beneficial activities such as herbivory, bioremediation, biodegradation, and biofertilization including nitrogen fixation are also discussed briefly. Finally, we have also discussed the scope and future prospects of endophytes in improving soil and crop health.


Endophytes Induced systemic resistance Plant growth promotion Plant disease management 


  1. Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, Rangel W, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1. doi: 10.1186/s40538-015-0051-3 CrossRefGoogle Scholar
  2. Antwerpen TV, Rutherford RS, Vogel JL (2002) Assessment of sugarcane endophytic bacteria and rhizospheric Burkholderia species as antifungal agents. Proc S Afr Surg Technol Assoc 76:301–304Google Scholar
  3. Araujo FD, Favaro LC, Araujo WL, Oliveira FL, Aparicio R, Marsaioli AJ (2012) Epilactone – natural product isolated from the sugarcane endophytic fungus, Epicoccum nigrum. Eur J Org Chem 27(3):5225–5230CrossRefGoogle Scholar
  4. Aravind R, Kumar A, Eapen SJ, Ramana KV (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48(1):58–64CrossRefPubMedGoogle Scholar
  5. Aung TN, Nourmohammadi S, Sunitha EM, Myint M (2011) Isolation of endophytic bacteria from greengram and study on their plant growth-promoting activities. Int J Appl Biol Pharm Technol 2(3):525–537Google Scholar
  6. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650CrossRefPubMedGoogle Scholar
  7. Bhosale HJ, Kadam TA (2015) Genetic diversity and a comparative account on plant growth promoting characteristics of actinimycetes in roots and rhizosphere of Saccharum officinarum. Int J Curr Microbiol App Sci 4:230–244Google Scholar
  8. Compant S, Saikkonen K, Mitter B, Campisano A, Mercado-Blanco J (2016) Editorial special issue: soil, plant and endophytes. Plant Soil 405(1):1–11CrossRefGoogle Scholar
  9. Dobereiner J, Baldani VLD, Reis VM (1995) Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Azospirillum VI and related microorganisms, volume 37 of the series NATO ASI series. Springer, Berlin, pp 3–14CrossRefGoogle Scholar
  10. Ek-Ramos MJ, Zhou W, Valencia CU, Antwi JB, Kalns LL, Morgan GD, Kerns DL, Sword GA (2013) Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS One 8(6):e66049CrossRefPubMedPubMedCentralGoogle Scholar
  11. Evangelisti E, Rey T, Schornack S (2014) Cross-interference of plant development and plant–microbe interactions. Curr Opin Plant Biol 20:118–126. doi: 10.1016/j.pbi.2014.05.014 CrossRefPubMedGoogle Scholar
  12. Fávaro LC, Sebastianes FL, Araújo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 7(6):e36826CrossRefPubMedPubMedCentralGoogle Scholar
  13. Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid and inhibit growth of pathogenic fungi. Curr Microbiol 61(6):485–493CrossRefPubMedGoogle Scholar
  14. Govindarajan M, Kwon SW, Weon H (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23(7):997–1006CrossRefGoogle Scholar
  15. Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbiol Ecol 55:21–37CrossRefGoogle Scholar
  16. Guevara MM (1990) Evaluation of Gliocladium spp. in the control of pineapple disease of sugarcane caused by Ceratocystis paradoxa (Dade) Moreau. Philipp Sugar Quart 1(4):20–28Google Scholar
  17. Gyaneshwar P, James EK, Natarajan M, Reddy PM, Reinhold-Hurek B, Jagdish KL (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183(8):2634–2645CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hardoim PR, van Overbeek LS, Berg G, Pirtilla AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320CrossRefPubMedPubMedCentralGoogle Scholar
  19. Heydari A, Fattahi H, Zamanizadeh HR, Zadeh NH, Naraghi L (2004) Investigation on the possibility of using bacterial antagonists for biological control of cotton seedling damping-off in greenhouse. Appl Entomol Phytopathol 72:51–68Google Scholar
  20. Hirsch AM (2004) Plant–microbe symbioses: a continuum from commensalism to parasitism. Symbiosis 37:345–363Google Scholar
  21. Hongrittipun P, Youpensuk S, Rerkasem B (2014) Screening of nitrogen fixing endophytic bacteria in Oryza sativa L. J Agric Sci 6(6):66–74Google Scholar
  22. Igarashi Y, Ogawa M, Sato Y, Saito N, Yoshida R, Kunoh H (2002) Fistupyrone, a novel inhibitor of the infection of Chinese cabbage by Alternaria brassicicola, from Streptomyces sp. J Antibiot 53(10):1117–1122CrossRefGoogle Scholar
  23. Jacob S, Sajjalaguddam RR, Kumar KVK, Varshney RK, Sudini H (2016) Assessing the prospects of Streptomyces sp. RP1A-12 in managing groundnut stem rot disease caused by Sclerotium rolfsii Sacc. J Gen Plant Pathol 82(2):96–104CrossRefGoogle Scholar
  24. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee IJ (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64CrossRefGoogle Scholar
  25. Kim HY, Ghoi GJ, Lee HB, Lee SW, Lim HK, Jang KS, Son SW, Lee SO, Cho KY, Sung ND, Kim JC (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44(3):332–337CrossRefPubMedGoogle Scholar
  26. Kumar KVK, Yellareddygari SKR, Reddy MS, Kloepper JW, Lawrence KS, Zhou XG, Sudini H, Groth DE, Krishnam Raju S, Miller ME (2012) Efficacy of Bacillus subtilis MBI 600 against sheath blight caused by Rhizoctonia solani and on growth and yield of rice. Rice Sci 19(1):55–63CrossRefGoogle Scholar
  27. Kumar V, Kumar A, Pandey KD, Roy BK (2015) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65(3):1391–1399CrossRefGoogle Scholar
  28. Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6(1):60CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lata H, Li XC, Silva B, Moares RM, Halda-Alija L (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult 85(3):353–359CrossRefGoogle Scholar
  30. Lins MRCR, Fontes JM, Vasconcelos NM, Santos DMS, Ferreira OE, Azevedo JC, Araujo JM, Lima GMS (2014) Plant growth-promoting potential of endophytic bacteria isolated from cashew leaves. Afr J Biotechnol 13(33):3360–3365CrossRefGoogle Scholar
  31. Lumactud R, Shen SY, Lau M, Fulthorpe R (2016) Bacterial endophytes isolated from plants in natural oil sleep soils with chronic hydrocarbon contamination. Front Microbiol 7:755CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mahalingam R, Ambikapathy V, Panneerselvam A (2011) Biocontrol measures of pineapple disease in sugarcane. Eur J Exp Biol 1(2):64–67Google Scholar
  33. Mahmoud RS, Narisawa K (2013) A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions. PLoS One 8(11):e78746CrossRefPubMedPubMedCentralGoogle Scholar
  34. Martinez B, Gonzales R, Balance C (1998) Antagonism of Trichoderma spp. strains on some sugarcane pathogens. Fitopathologia 33:207–211Google Scholar
  35. Mbai FN, Magiri EN, Matiru VN, Nganga J, Nyambati VCS (2013) Isolation and characterization of bacterial root endophytes with potential to enhance plant growth from Kenyan Basmati rice. Am Int J Contemp Res 3(4):25–40Google Scholar
  36. McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173(2):337–342CrossRefGoogle Scholar
  37. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JS (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73(22):7259–7267CrossRefPubMedPubMedCentralGoogle Scholar
  38. Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA et al (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84(6):937–944CrossRefPubMedGoogle Scholar
  39. Muangthong A, Youpensuk S, Rerkasem B (2015) Isolation and characterization of endophytic nitrogen fixing bacteria in sugarcane. Trop Life Sci Res 26(1):41–51PubMedPubMedCentralGoogle Scholar
  40. Muthukumar A, Nakkeeran S, Eswaran A, Sangeetha G (2010) In vitro efficacy of bacterial endophytes against the chilli damping-off pathogen Pythium aphanidermatum. Phytopathol Mediterr 49(2):179–186Google Scholar
  41. Naik BS, Shashikala J, Krishnamurthy YL (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164(3):290–296CrossRefPubMedGoogle Scholar
  42. Ngamau N, Matiru., Viviene, N., Tani, A., and Muthuri, C. W. (2012) Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. Afr J Microbiol Res 6:6414–6422Google Scholar
  43. Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144Google Scholar
  44. Omarjee J, Antwerpen TV, Balandreau J, Kuniata L, Rutherford S (2004) Isolation and characterization of some endophytic bacteria from Papua New Guinea sugarcane. Proc S Afr Surg Technol Assoc 78:189–194Google Scholar
  45. Onofre SB, Bonfante T, Santos ZMQ, Moura MC, Cardoso AF (2014) Cellulase production by endophytic strains of Trichoderma reesei from Baccharis dracunculifolia D.C. (Asteraceae). Adv Microbiol 4:275–283CrossRefGoogle Scholar
  46. Orlandelli RC, Almeida TT, Alberto RN, Polonio JC, Azevedo JC, Pamphile JA (2015) Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz J Microbiol 46(2):359–366CrossRefPubMedPubMedCentralGoogle Scholar
  47. Orole OO, Adejumo TO (2011) Bacterial and fungal endophytes associated with grains and roots of maize. J Ecol Nat Environ 3(9):298–303Google Scholar
  48. Parisi PAG, Grimoldi AA, Omacini M (2014) Endophytic fungi of grasses protect other plants from aphid herbivory. Fungal Ecol 9:61–64CrossRefGoogle Scholar
  49. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775CrossRefPubMedGoogle Scholar
  50. Parsa S, Garcia-Lemos AM, Castillo K, Oritz V, Lopez-Lavalle LAB, Braun J, Vega FE (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol 120(5):783–790CrossRefPubMedPubMedCentralGoogle Scholar
  51. Patil NB, Gajbhiye M, Ahiwale SS, Gunjal AB, Kapadnis BP (2011) Optimization of indole 3-acetic acid (IAA) production by Acetobacter diazotrophicus L1 isolated from sugarcane. Int J Environ Res 2(1):307–314Google Scholar
  52. Paul NC, Deng JX, Sang HK, Choi YP, Yu SH (2012) Distribution and antifungal activity of endophytic fungi in different growth stages of chilli pepper (Capsicum annuum L.) in Korea. Plant Pathol J 28(1):10–19CrossRefGoogle Scholar
  53. Paul NC, Ji S,H, Deng JX, Yu SH (2013) Assemblages of endophytic bacteria in chilli pepper (Capsicum annuum L.) and their antifungal activity against phytopathogens in vitro. Plant Omics 6(6):441–448Google Scholar
  54. Prabudoss V (2011) A real multi beneficial endophytic diazotroph Gluconacetobacter diazotrophicus for sugarcane. Int J Curr Res 3(6):103–106Google Scholar
  55. Prasad MP, Dagar S (2014) Identification and characterization of endophytic bacteria from fruits like avocado and black grapes. Int J Curr Microbiol App Sci 3(8):937–947Google Scholar
  56. Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47(6):486–491CrossRefPubMedGoogle Scholar
  57. Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the egg plant (Solanum melongena L.) World J Microbiol Biotechnol 5(1):47–55CrossRefGoogle Scholar
  58. Roberts E, Lindow S (2014) Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora. ISME J 8:359–368CrossRefPubMedGoogle Scholar
  59. Robl D, Delabona PDS, Megel CM, Rojas JD, Costa PDS, Pimentel ID, Vincente VA, Pradella JGDC, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94CrossRefPubMedPubMedCentralGoogle Scholar
  60. Romao-Dumaresq A, Araujo WL, Talbot NJ, Thornton CR (2012) RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One 7(10):e47888CrossRefPubMedPubMedCentralGoogle Scholar
  61. Russo ML, Pelizza SA, Cabello MN, Stenglien SA, Scorsetti AC (2015) Endophytic colonization of tobacco, corn, wheat and soybeans by the fungal entomopathogen, Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Sci Tech 25(4):475–480CrossRefGoogle Scholar
  62. Sang MK, Shrestha A, Kim D, Park K, Pak CH, Kim KD (2013) Biocontrol of phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol J 29(2):154–167CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sharma T, Kaul S, Dhar MK (2015) Diversity of culturable bacterial endophytes of saffron in Kashmir, India. Spring 4:61CrossRefGoogle Scholar
  64. Shehata HR, Lyons EM, Jordan KS, Raizada MN (2016) Bacterial endophytes from wild and ancient maize are able to suppress the fungal pathogen Sclerotinia homoeocarpa. J Appl Microbiol 120(3):756–769CrossRefPubMedGoogle Scholar
  65. Shentu X, Zhan X, Ma Z, Yu X, Zhang C (2014) Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz J Microbiol 45(1):248–254CrossRefPubMedPubMedCentralGoogle Scholar
  66. Silva JM, Santos TMC, Albuquerque LS, Montaldo YC, Oliveria JUL, Silva SGM, Nascimento MS, Teixeria RRO (2015) Potential of endophytic bacteria (Herbaspirillum spp. and Bacillus spp.) to promote sugarcane growth. Aust J Crop Sci 9(8):754–760Google Scholar
  67. Singh V, Joshi BB, Awasthi SK, Srivastava SN (2008) Eco-friendly management of red rot disease of sugarcane with Trichoderma strains. Sugar Tech 10(2):156–161Google Scholar
  68. Sinma K, Nurak T, Khucharoenphaisan K (2015) Potentiality of endophytic actinomycetes isolated from sugarcane. KMITL Sci Technol J 15(2):88–97Google Scholar
  69. Sobolev VS, Orner VA, Arias RS (2013) Distribution of bacterial endophytes in peanut seeds obtained from axenic and control plant material under field conditions. Plant Soil 37(1):367–376CrossRefGoogle Scholar
  70. Souja A, Cruz JC, Sousa NR, Procopio AR, Silva GF (2014) Endophytic bacteria from banana cultivars and their antifungal activity. Genet Mol Res 13(4):8661–8670CrossRefGoogle Scholar
  71. Souza R, Beneduzi A, Ambrosini A, Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366(1):585–603CrossRefGoogle Scholar
  72. Sreeja K, Anandaraj M, Bhai RS (2016) In vitro evaluation of fungal endophytes of black pepper against Phytophthora capsici and Radopholus similis. J Spices Aromat Crops 25(2):113–122Google Scholar
  73. Srivastava S, Singh M, Paul AK (2016) Arsenic biodegradation and bioactive potential of endophytic bacterium Bacillus pumilus isolated from Pteris vittata L. Int J Adv Biotechnol Res 7(1):77–92Google Scholar
  74. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142(2):435–440CrossRefPubMedGoogle Scholar
  75. Sword G, Ek-Ramos MJ, Lopez DC, Kalns L, Zhou W, Valencia C (2012) Fungal endophytes and their potential for biocontrol in cotton. In: Entomological society of America annual meeting 2012Google Scholar
  76. Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4:26CrossRefPubMedPubMedCentralGoogle Scholar
  77. Talukder MI, Begum F, Azad MMK (2007) Management of pineapple disease of sugarcane through biological means. J Agric Rural Dev 5:79–83Google Scholar
  78. Tam HM, Diep CN (2014) Isolation, characterization and identification of endophytic bacteria in sugarcane (Saccharum spp. L.) cultivated on soils of the Dong Nai Province, Southeast of Vietnam. Am J Life Sci 2(6):361–368CrossRefGoogle Scholar
  79. UmaMaheswari T, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol App Sci 2(6):127–136Google Scholar
  80. Uppala S (2007) Potentiality of endophytic microorganisms in the managment of leaf blight disease of amaranth. Masters Thesis. Kerala Agricultural University. doi:10.13140/RG.2.2.33389.90083Google Scholar
  81. Uppala S, Beena S, Chapala M, Bowen KL (2010a) Role of endophytes in inducing systemic resistance against leaf blight disease of amaranth. In: Reddy MS, Desai S, Sayyed RZ, Rao VK, Sarma YR, Reddy BC, Reddy KRK, Podile AR, Kloepper JW (eds) Plant growth promotion by Rhizobacteria for sustainable agriculture. Scientific Publishers, Jodhpur, pp 516–523. doi:10.13140/RG.2.1.2898.1289Google Scholar
  82. Uppala S, Beena S, Chapala M, Bowen KL (2010b) Amaranth endophytes and their role in plant growth promotion. In: Reddy MS, Desai S, Sayyed RZ, Rao VK, Sarma YR, Reddy BC, Reddy KRK, Podile AR, Kloepper JW (eds) Plant growth promotion by Rhizobacteria for sustainable agriculture. Scientific Publishers, Jodhpur, pp 531–537. doi:10.13140/RG.2.1.3291.3441Google Scholar
  83. Uppala S, Beena S, Chapala M, Bowen KL (2010c) Bioefficacy of endophytes in the management of leaf blight disease of amaranth. In: Reddy MS, Desai S, Sayyed RZ, Rao VK, Sarma YR, Reddy BC, Reddy KRK, Podile AR, Kloepper JW (eds) Plant growth promotion by Rhizobacteria for sustainable agriculture. Scientific Publishers, Jodhpur, pp 524–530. doi:10.13140/RG.2.1.2767.0564Google Scholar
  84. Vieira PD, Motta CM, Lima D, Torres JB, Quecine MC, Azevedo JC, de Oliveira NT (2011) Endophytic fungi associated with transgenic and non-transgenic cotton. Mycology 2(2):91–97CrossRefGoogle Scholar
  85. Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10(1):280–287CrossRefGoogle Scholar
  86. Yadav RL, Singh V, Srivastava SN, Lal RJ, Awasthi SK, Joshi BB (2008) Use of Trichoderma harzianum for the control of red rot disease of sugarcane. Sugarcane Int 26(4):28–33Google Scholar
  87. Zakaria L, Yaakop AS, Salleh B, Zakaria M (2010) Endophytic fungi from paddy. Trop Life Sci Res 21(1):101–107PubMedPubMedCentralGoogle Scholar
  88. Ziedan EHE (2006) Manipulating endophytic bacteria for biological control to soil borne diseases of peanut. J Appl Sci Res 2(8):497–502Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • P. Kishore Varma
    • 1
  • S. Uppala
    • 2
  • Kiran Pavuluri
    • 3
  • K. Jaya Chandra
    • 1
  • M. M. Chapala
    • 4
  • K. Vijay Krishna Kumar
    • 1
    Email author
  1. 1.Acharya N. G. Ranga Agricultural University, Regional Agricultural Research StationAnakapalleIndia
  2. 2.Texas A & M AgriLife Research CentreBeaumontUSA
  3. 3.Sirius Minerals Plc 7-10 Manor Court, Manor GarthScarboroughUK
  4. 4.Rice TecAlvinUSA

Personalised recommendations