Endophytic and Epiphytic Modes of Microbial Interactions and Benefits

  • Jay Kumar
  • Divya Singh
  • Paushali Ghosh
  • Ashok KumarEmail author


Plants and microbes are the important components of ecosystem, and their interactions help in regulating the biogeochemical cycle in the environment. Plant-associated microorganisms include bacteria, fungi, viruses, and some algae. They may be endophytic and/or epiphytic depending upon their location on the host plants. These microbes use host plants for their growth, colonization, and proliferation; however, they offer a variety of benefits to the hosts. Colonization of microorganisms on host plants takes place through air, water, and insects, or they may also be present in germinating plant parts. Endophytic microbial interactions influence the internal part, while epiphytic microbial interactions influence the exterior surface of the plants. These microbes are not harmful to the plants; however, they secrete some beneficial substances which may help in plant growth promotion, resistance to pathogenic microbes, removal of harmful contaminants, and production of secondary metabolites. In such a way, microbes contribute in agricultural crop improvement, food safety, and industries. This chapter briefly deals with the ecology, interactions, and benefits of plant-microbe interaction, especially in the area of sustainable agriculture and crop improvement.


Endophytes Epiphytes Bacteria Colonization Plants Crop improvement 



JK is grateful to University Grants Commission (UGC), New Delhi, for the award of Junior Research Fellowship (23/06/2013 (I) EU-V). DS and PG are the recipient of DST-INSPIRE (DST/INSPIRE Fellowship/2014/296, IF140707) and Banaras Hindu University Research fellowship, respectively. Research in the area of PGPR is partly supported by a research grant sanctioned to AK by the Indian Council of Agricultural Research, Government of India, New Delhi (NBAIM/AMAAS/2014-17/PF/4).


  1. Alvindia DG, Natsuaki KT (2008) Evaluation of fungal epiphytes isolated from banana fruit surfaces for biocontrol of banana crown rot disease. Crop Protect 27:1200–1207. doi: 10.1016/j.cropro.2008.02.007 CrossRefGoogle Scholar
  2. Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914. doi: 10.1128/AEM.68.10.4906 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aravind R, Eapen SJ, Kumar A, Ramana KV (2010) Screening of endophytic bacteria and evaluation of selected isolates for suppression of burrowing nematode (Radopholus similis Thorne) using three varieties of black pepper (Piper nigrum L.). Crop Prot 29:318–324Google Scholar
  4. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. doi: 10.1890/05-1459
  5. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Pros Natl Acad Sci USA 100:15649–15654CrossRefGoogle Scholar
  6. Arny DC, Lindow SE, Upper CD (1976) Frost sensitivity of Zea mays increased by application of Pseudomonas syringae. Nature 262:282–284CrossRefGoogle Scholar
  7. Ballio A, Bossa F, DiGiogio P, Ferranti P, Paci M, Pucci P et al (1994) Structure of the pseudomycins, new lipodepsipeptides produced by Pseudomonas syringae MSU 16H. FEBS Lett 355:96–100PubMedCrossRefGoogle Scholar
  8. Bar T, Okon Y (1993) Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense Sp7. Can J Microbiol 39:81–86CrossRefGoogle Scholar
  9. Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 33:145–172PubMedCrossRefGoogle Scholar
  10. Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: BJE S, CJC B, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 53–69CrossRefGoogle Scholar
  11. Bischoff JF, White JF Jr (2005) Evolutionary development of the Clavicipitaceae. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. Taylor and Francis, Boca Raton, pp 505–518Google Scholar
  12. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406PubMedCrossRefGoogle Scholar
  13. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 16:839–851CrossRefGoogle Scholar
  14. Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dye F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159:699–708PubMedCrossRefGoogle Scholar
  15. Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710PubMedCrossRefGoogle Scholar
  16. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95PubMedCrossRefGoogle Scholar
  17. Clark E, Manulis S, Ophir Y, Barash I, Gafni Y (1993) Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathology 83:234–240CrossRefGoogle Scholar
  18. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16CrossRefGoogle Scholar
  19. Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127PubMedCrossRefGoogle Scholar
  20. Costacurta A, Kiejers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilence indole-3- pyruvate decarboxylase gene. Mol Gen Genet 243:463–472PubMedGoogle Scholar
  21. Cruz-Angón A, Baena ML, Greenberg R (2009) The contribution of epiphytes to the abundance and species richness of canopy insects in a Mexican coffee plantation. J Trop Ecol 25:453–463CrossRefGoogle Scholar
  22. Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver D, Runyon JB (2002a) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741PubMedCrossRefGoogle Scholar
  23. Daisy BH, Strobel GA, Ezra D, Castillo U, Baird G, Hess WM (2002b) Muscodor vitigenus anam. sp. nov., an endophyte from Paullinia paullinioides. Mycotaxon 84:39–50Google Scholar
  24. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low nutrient environments. Plant Soil 245:35–47CrossRefGoogle Scholar
  25. de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849PubMedPubMedCentralCrossRefGoogle Scholar
  26. de Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43:1562–1575. doi: 10.1590/S1517-838220120004000041
  27. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433PubMedPubMedCentralCrossRefGoogle Scholar
  28. Delong EF (2009) The microbial ocean from genomes to biomes. Nature 459:200–206. doi: 10.1038/nature08059 PubMedCrossRefGoogle Scholar
  29. Demain AL (2000) Microbial natural products: a past with a future. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 3–16CrossRefGoogle Scholar
  30. Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327PubMedCrossRefGoogle Scholar
  31. Dong Y, Iniguez AL, Triplett EW (2003) Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant Soil 257:49–59CrossRefGoogle Scholar
  32. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333PubMedCrossRefGoogle Scholar
  33. English MM, Coulson TJD, Horsman SR, Patten CL (2010) Overexpression of hns in the plant growth-promoting bacterium Enterobacter cloacae UW5 increases root colonization. J Appl Microbiol 108:2180–2190PubMedGoogle Scholar
  34. Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303CrossRefGoogle Scholar
  35. Fernandes R, Júnior G, Aparecida E, Pedrinho N, Cristina T, Castellane L (2011) Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered Brazilian orchid, and their role in acclimatization. Rev Bras Ciênc Solo 35:729–737CrossRefGoogle Scholar
  36. Fett WF, Osman SF, Dunn MF (1987) Auxin production by plant pathogenic Pseudomonads and Xanthomonads. Appl Environ Microbiol 53:1839–1845Google Scholar
  37. Fiala V, Glad C, Martin M, Jolivet E, Derridj S (1990) Occurrence of soluble carbohydrates on the phylloplane of maize (Zea mays L.): variations in relation to leaf heterogeneity and position on the plant. New Phytol 115:609–615CrossRefGoogle Scholar
  38. Fisher PJ, Petrini O, Lappin-Scott HM (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122:299–305Google Scholar
  39. Gage DJ, Bobo T, Long SR (1996) Use of green fluorescent protein to visualize early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J Bacteriol 178:7159–7166PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ganley RJ, Sniezko RA, Newcombe G (2008) Endophyte-mediated resistance against white pine blister rust in Pinus monticola. For Ecol Manag 255:2751–2760CrossRefGoogle Scholar
  41. Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234PubMedCrossRefGoogle Scholar
  42. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–114CrossRefGoogle Scholar
  43. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMedCrossRefGoogle Scholar
  44. Goulder R, Baker JH (1991) Submerged leaf surfaces as a microbial habitat. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 60–86CrossRefGoogle Scholar
  45. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526PubMedPubMedCentralCrossRefGoogle Scholar
  46. Guo B, Dai J, Ng S, Huan Y, Leong C, Ong W, Carte BK (2000) Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604PubMedCrossRefGoogle Scholar
  47. Hallmann J, Qualt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  48. Hamayun M, Khan SA, Khan AL, Rehman G, Kim YH et al (2010) Gibberellins production and plant growth promotion by pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.) Mycologia 102:989–995PubMedCrossRefGoogle Scholar
  49. Harish S, Kavino M, Kumar N, Saravanakumara D, Soorianathasundaramb K, Samiyappana R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy topvirus. Appl Soil Ecol 39:187–200CrossRefGoogle Scholar
  50. Harrison L, Teplow D, Rinaldi M, Strobel GA (1991) Pseudomycins, a family of novel peptides from Pseudomonas syringae, possessing broad spectrum antifungal activity. J Gen Microbiol 137:2857–2865PubMedCrossRefGoogle Scholar
  51. Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trend Plant Sci 5:128–133CrossRefGoogle Scholar
  52. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-compound system in plant-associated and other Gram-negative bacteria. Mol Plant-Microb Interact 14:1351–1363CrossRefGoogle Scholar
  53. Hellwig V, Grothe T, Mayer-Bartschmid A, Endermann R, Geschke FU, Henkel T et al (2002) Altersetin, a new antibiotic from cultures of endophytic Alternaria spp. Taxonomy, fermentation, isolation, structure elucidation and biological activities. J Antibiot 55:881–892Google Scholar
  54. Hietz P (2005) Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conserv Biol 19:391–399CrossRefGoogle Scholar
  55. Hirano SS, Baker LS, Upper CD (1996) Raindrop momentum triggers growth of leaf-associated populations of Pseudomonas syringae on field-grown snap bean plants. Appl Environ Microbiol 62:2560–2566PubMedPubMedCentralGoogle Scholar
  56. Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424-434Google Scholar
  57. Hsieh SPY, Buddenhagen IW (1974) Suppressing effects of Erwinia herbicola on infection by Xanthomonas oryzae and on symptom development in rice. Phytopathology 64:1182–1185CrossRefGoogle Scholar
  58. Huang JS (1986) Ultrastructure of bacterial penetration in plants. Annu Rev Phytopathol 24:141–157CrossRefGoogle Scholar
  59. Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3(2):reviews0003.1–reviews0003.8CrossRefGoogle Scholar
  60. Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178PubMedCrossRefGoogle Scholar
  61. Ikeda S, Okubo T, Anda M, Nakashita H, Yasuda M, Sato S et al (2010) Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. Plant Cell Physiol 51:1398–1410PubMedCrossRefGoogle Scholar
  62. Inacio J, Pereira P, de Carvalho M, Fonseca A, Amaral-Collaco MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb Ecol 44:344–353PubMedCrossRefGoogle Scholar
  63. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  64. Kavroulakis NS, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou K (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864PubMedCrossRefGoogle Scholar
  65. Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441PubMedCrossRefGoogle Scholar
  66. Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332PubMedCrossRefGoogle Scholar
  67. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–233Google Scholar
  68. Koornneef A, Pieterse CM (2008) Cross-talk in defense signaling. Plant Physiol 146:839–844PubMedPubMedCentralCrossRefGoogle Scholar
  69. Korner H, Sofia HJ, Zumft WG (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27:559–592PubMedCrossRefGoogle Scholar
  70. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J et al (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp strain BH72. Nat Biotechnol 24:1385–1391PubMedCrossRefGoogle Scholar
  71. Krimm U, Abanda-Nkpwatt D, Schwab W, Schreiber L (2005) Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiol Ecol 53:483–492PubMedCrossRefGoogle Scholar
  72. Kumar J, Babele PK, Singh D, Kumar A (2016) UV-B radiation stress causes alterations in whole cell protein profile and expression of certain genes in the rice phyllospheric bacterium Enterobacter cloacae. Front Microbiol 7:1440. doi: 10.3389/fmicb.2016.01440
  73. Larrainzar E, O’Gara F, Morrissey JP (2005) Applications of autofluorescent proteins for in situ studies in microbial ecology. Ann Rev Microbiol 59:257–277CrossRefGoogle Scholar
  74. Lavermicocca P, Surico G, Varvaro L, Babelegoto NM (1987) Plant hormone, cryogenic and antimicrobial activities of epiphytic bacteria of live and oleander. Phytopathol Mediterr 26:65–72Google Scholar
  75. Legard DE, McQuilken MP, Whipps JM, Fenlon JS, Fermor TR, Thompson IP et al (1994) Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganism. Agric Ecosyst Environ 50:87–101CrossRefGoogle Scholar
  76. Leveau JHJ, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98:3446–3453PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li JY, Strobel GA, Sidhu R, Hess WM, Ford E (1996) Endophytic taxol producing fungi from bald cypress Taxodium distichum. Microbiology 142:2223–2226PubMedCrossRefGoogle Scholar
  78. Lilley AK, Hails RS, Cory JS, Bailey MJ (1997) The dispersal and establishment of pseudomonad populations in the phyllosphere of sugar beet by phytophagous caterpillars. FEMS Microbiol Ecol 24:151–157CrossRefGoogle Scholar
  79. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883. doi: 10.1128/AEM.69.4.1875-1883 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lindow SE, Hecht-Poinar EI, Elliot VJ (eds) (2002) Phyllosphere microbiology. American Phytopathological Society, St. Paul, USAGoogle Scholar
  81. Links MG, Demeke T, Gräfenhan T, Hill JE, Hemmingsen SM, Dumonceaux TJ (2014) Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytol 202:542–553. doi: 10.1111/nph.12693 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Loh CY, Tan YY, Rohani R, Weber JF, Bhore SJ (2013) Diversity of endophytic bacteria in Malaysian plants as revealed by 16S rRNA encoding gene sequence based method of bacterial identification. J Young Pharm 5:95–107. doi: 10.1016/j.jyp.2013.07.001
  83. Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13PubMedCrossRefGoogle Scholar
  84. Lynch JM (1990) The rhizosphere. Wiley, New YorkGoogle Scholar
  85. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258PubMedCrossRefGoogle Scholar
  86. Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25. doi: 10.1016/j.jenvman.2016.02.047 CrossRefGoogle Scholar
  87. Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–3623. doi: 10.1099/mic.0.2008/022772-0 PubMedCrossRefGoogle Scholar
  88. Matilla MA, Espinosa-Urgel M, Rodriguez-Herva JJ, Ramos JL, Ramos-Gonzalez MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179. doi: 10.1186/gb-2007-8-9-r179 PubMedPubMedCentralCrossRefGoogle Scholar
  89. McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342CrossRefGoogle Scholar
  90. Mehta A, Rosato YB (2005) Identification of differentially expressed genes of Xanthomonas axonopodis pv. citri by representational difference analysis of cDNA. Genet Mol Biol 28:140–149CrossRefGoogle Scholar
  91. Mejía LC, Rojas EI, Maynard Z, Bael SV et al (2008) Endophytic fungi as biocontrol agents of Thebroma cacao pathogens. Biol Control 46:4–14CrossRefGoogle Scholar
  92. Mercier J, Lindow SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66:369–374PubMedPubMedCentralCrossRefGoogle Scholar
  93. Miller RV, Miller CM, Garton-Kinney D, Redgrave B, Sears J, Condron M et al (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944PubMedCrossRefGoogle Scholar
  94. Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A (2013) Advances in elucidating beneficial interactions between plants, soil and bacteria. In: Donald LS (ed) Advances in agronomy. Academic Press, Cambridge, pp 381–445Google Scholar
  95. Molina-Henares AJ, Krell T, Guazzaroni ME, Segura A, Ramos JL (2006) Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 30:157–186PubMedCrossRefGoogle Scholar
  96. Monta~nez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28CrossRefGoogle Scholar
  97. Morris CE, Kinkel LL (2002) Fifty years of phyllosphere microbiology: significant contributions to research in related fields. In: Lindow SE, Hecht-Poinar EI, Elliott V (eds) Phyllosphere microbiology. APS Press, St. Paul, pp 365–375Google Scholar
  98. Mostert L, Crous PW, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 52:46–58Google Scholar
  99. Muller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–455PubMedCrossRefGoogle Scholar
  100. Newton AC, Gravouil C, Fountaine JM (2010) Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157:343–359CrossRefGoogle Scholar
  101. Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745PubMedPubMedCentralGoogle Scholar
  102. Osono (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100:387–391. doi: 10.3852/07-110R1 PubMedCrossRefGoogle Scholar
  103. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220PubMedCrossRefGoogle Scholar
  104. Pereira SIA, Castro PML (2014) Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth promoting agents in metal-degraded soils. Environ Sci Pollut Res 21:14110–14123CrossRefGoogle Scholar
  105. Pérez ML, Collavino MM, Sansberro PA, Mroginski LA, Galdeano E (2016) Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions. World J Microbiol Biotechnol 32:61. doi: 10.1007/s11274-016-2016-5 PubMedCrossRefGoogle Scholar
  106. Peters AF (1991) Field and culture studies of Streblonema macrocystis sp. nov. (Ectocarpales, Phaeophyceae) from Chile, a sexual endophyte of giant kelp. Phycology 30:365–377CrossRefGoogle Scholar
  107. Phetcharat P, Duangpaeng A (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng 32:177–183CrossRefGoogle Scholar
  108. Preece TF, Dickinson CH (eds) (1971) Ecology of leaf surface micro-organisms. Academic Press, London/New YorkGoogle Scholar
  109. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160PubMedCrossRefGoogle Scholar
  110. Rajkumar M, Ma Y, Freitas H (2013) Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. J Environ Manag 128:973–980. doi: 10.1016/j.jenvman.2013.07.001 CrossRefGoogle Scholar
  111. Rasche F, Marco-Noales E, Velvis H, Leo S, van Overbeek LMM et al (2006) Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil 289:123–140CrossRefGoogle Scholar
  112. Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function and dynamics in the environment. Microb Microb Technol 29–57. doi: 10.1007/978-1-4419-7931-5_2
  113. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  114. Rosenblueth M, Martinez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344PubMedCrossRefGoogle Scholar
  115. Ryffel F, Helfrich EJN, Kiefer P, Peyriga L, Portais JC, Piel J et al (2016) Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10:632–643. doi: 10.1038/ismej.2015.141 PubMedCrossRefGoogle Scholar
  116. Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160PubMedCrossRefGoogle Scholar
  117. Saikkonen K, Ion D, Gyllenberg M (2002) The persistence of vertically transmitted fungi in grass metapopulations. Proc R Soc Lond B 269:1397–1403CrossRefGoogle Scholar
  118. Santhi DP, Unnamalai N, Gnanamanickam SS (1987) Epiphytic association of Erwinia herbicola with rice leaves infected by Xanthomonas campestris pv. oryzae and its interaction with the pathogen. Indian Phytopathol 40:327–332Google Scholar
  119. Schaad NW, Cheong SS, Tamaki S, Hatziloukas E, Panopoulos NJ (1995) A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 85:243–246CrossRefGoogle Scholar
  120. Schiff PB, Horowitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77:1561–1565PubMedPubMedCentralCrossRefGoogle Scholar
  121. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686PubMedCrossRefGoogle Scholar
  122. Schweitzer JA, Bailey JK, Bangert RK, Hart SC, Whitham TG (2006) The role of plant genetics in determining above- and below-ground microbial communities. In: Bailey MJ, Lilley AK, PTN T-W, Spencer-Phillips PTN (eds) Microbial ecology of the aerial plant surface. CABI International, Wallingford, pp 107–119CrossRefGoogle Scholar
  123. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249PubMedCrossRefGoogle Scholar
  124. Shi YW, Lou K, Li C (2009) Promotion of plant growth by phytohormone producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653CrossRefGoogle Scholar
  125. Smith CJ (1996) Accumulation of phytoalexins: defense mechanism and stimulus response system. New Phytol 32:1–45CrossRefGoogle Scholar
  126. Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–30Google Scholar
  127. Strobel GA (2002) Microbial gifts from rain forests. Can J Plant Pathol 24:14–20CrossRefGoogle Scholar
  128. Strobel GA, Miller RV, Miller C, Condron M, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926PubMedCrossRefGoogle Scholar
  129. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268PubMedCrossRefGoogle Scholar
  130. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  131. Suarez-Moreno ZR, Devescovi G, Myers M, Hallack L, Mendonca-Previato L, Caballero-Mellado J et al (2010) Commonalities and differences in regulation of N-acyl homoserine lactone quorum sensing in the beneficial plant-associated Burkholderia species cluster. Appl Environ Microbiol 76:4302–4317PubMedPubMedCentralCrossRefGoogle Scholar
  132. Suffness M (1995) Taxol, science and applications. CRC Press, Boca RatonGoogle Scholar
  133. Sundin GW, Jacobs JL (1999) Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L.) Microb Ecol 38:27–38PubMedCrossRefGoogle Scholar
  134. Thompson 1P, Bailey MJ, Fenlon JS, Fermor TR, Lilley AK et al (1993) Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vdgaris). Plant Soil 150:177–191CrossRefGoogle Scholar
  135. Van der Wal A, Leveau JH (2011) Modelling sugar diffusion across plant leaf cuticles: the effect of free water on substrate availability to phyllosphere bacteria. Environ Microbiol 13:792–797PubMedCrossRefGoogle Scholar
  136. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840PubMedCrossRefGoogle Scholar
  137. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51PubMedPubMedCentralCrossRefGoogle Scholar
  138. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598PubMedCrossRefGoogle Scholar
  139. Weyens N, Truyens S, Dupae J, Newman L, van der Lelie D, Carleer R et al (2010) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919. doi: 10.1016/j.envpol.2010.06.004 PubMedCrossRefGoogle Scholar
  140. White FF, Ziegler SF (1991) Cloning of the genes for indole acetic acid synthesis from Pseudomonas syringae pv. syringae. Mol Plant-Microbe Interact 4:207–210. doi: 10.1094/MPMI-4-207 CrossRefGoogle Scholar
  141. Whitehead NA, Byers JT, Commander P, Corbett MJ, Coulthurst SJ, Everson L et al (2002) The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie Van Leeuwenhoek 8:223–231CrossRefGoogle Scholar
  142. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant-Microbe Interact 13:1027–1033PubMedCrossRefGoogle Scholar
  144. Xie F, Williams A, Edwards A, Downie JA (2012) A plant arabinogalactan-like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum. Mol Plant-Microbe Interact 25:250–258PubMedCrossRefGoogle Scholar
  145. Xiong ZQ, Yang YY, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol 13:71PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yi SY, Shirasu K, Moon JS, Lee SG, Kwon SY (2014) The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 9(2):e88951PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yong YH, Dai CC, Gao FK, Yang QY, Zhao M (2009) Effects of endophytic fungi on growth and two kinds of terpenoids for Euphorbia pekinensis. Chin Tradit Herb Drugs 40:18–22Google Scholar
  148. Young DH, Michelotti EJ, Sivendell CS, Krauss NE (1992) Antifungal properties of taxol and various analogues. Experientia 48:882–885PubMedCrossRefGoogle Scholar
  149. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683PubMedCrossRefGoogle Scholar
  150. Yu J, Peñaloza-Vázquez A, Chakrabarty AM, Bender CL (1999) Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720PubMedCrossRefGoogle Scholar
  151. Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M et al (2011a) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Matter 186:1720–1725CrossRefGoogle Scholar
  152. Zhang Q, Lambert G, Liao D, Kim H, Robin et al (2011b) Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333:1764–1767. doi: 10.1126/science.1208747
  153. Zhang Q, Zhang J, Yang L, Zhang L, Jiang D, Chen W, Li G (2014) Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol Control 72:98–108. doi: 10.1016/j.biocontrol.2014.02.018 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Jay Kumar
    • 1
  • Divya Singh
    • 1
  • Paushali Ghosh
    • 1
  • Ashok Kumar
    • 1
    Email author
  1. 1.School of Biotechnology, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations