Advertisement

Rhizosphere Signaling Cascades: Fundamentals and Determinants

  • Utkarsh M. Bitla
  • Ajay M. Sorty
  • Kamlesh K. MeenaEmail author
  • Narendra P. Singh
Chapter

Abstract

Molecular interactions among the plants and microbes represent an important microecological phenomenon. The cross talk involves multiple ecological aspects like exchange of metabolites, signaling and chemotaxis, etc. These bilateral interactions are crucial for the health and development of both the plant and colonizing microbes. The signal molecules play major role as inducers of different pathways that contribute indispensable role for the survival of the participants under adverse circumstances and development of symbiotic associations as well. Though the recent high-throughput techniques have generated considerable data regarding the molecular exchanges happening in the rhizosphere microbes and the host, our current knowledge in this area is still in infancy. It is thus critical to get deeper insights of such interactions so as to develop next-generation strategies relating to the sustainable agriculture under the changing climate scenario. We describe herewith the major aspects concerning the contributors and their role in rhizosphere signaling cascades and the consequent post-signaling responses given by the host and the colonizing microbes.

Keywords

Rhizosphere Bacteria Host–microbe interaction Chemotaxis Signaling 

Notes

Acknowledgments

The authors gratefully acknowledge the financial assistance from Indian Council of Agricultural Research (ICAR), Govt. of India, under Application of Microorganisms in Agriculture and Allied Sectors (AMAAS).

References

  1. Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology 77:182–189CrossRefGoogle Scholar
  2. Ahmed E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aloni R, Aloni E, Langhans M et al (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arkhipova TN, Veselov SU, Melantiev AI et al (2005) Ability of bacterium Bacillus to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209CrossRefGoogle Scholar
  5. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978PubMedPubMedCentralCrossRefGoogle Scholar
  6. Atzorn R, Crozier A, Wheeler CT et al (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538PubMedCrossRefGoogle Scholar
  7. Audenaert K, Pattery T, Cornelis P et al (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156PubMedCrossRefGoogle Scholar
  8. Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot 66:3001–3010. doi: 10.1093/jxb/erv155 PubMedCrossRefGoogle Scholar
  9. Bais HP, Weir TL, Perry LG (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159 PubMedCrossRefGoogle Scholar
  10. Balachandar D, Sandhiya GS, Sugitha TCK et al (2006) Flavonoids and growth hormones influence endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp in rice. World J Microbiol Biotechnol 22:707–712CrossRefGoogle Scholar
  11. Barriuso J, Solano BR, Fray RG et al (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452. doi: 10.1111/j.1467-7652.2008.00331.x PubMedCrossRefGoogle Scholar
  12. Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424. 15PubMedCrossRefGoogle Scholar
  13. Bastian F, Cohen A, Piccoli P, Luna V et al (1998) Production of indole 3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11CrossRefGoogle Scholar
  14. Benhamou N, Kloepper JW, Tuzun S et al (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168CrossRefGoogle Scholar
  15. Benhamou N, Gagné S, Quéré DL et al (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Biochem Cell Biol 90:45–56Google Scholar
  16. Berendsen RL, Pieterse CMJ, Bakker PAHM et al (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi: 10.1016/j.tplants.2012.04.001 PubMedCrossRefGoogle Scholar
  17. Berg G (2009) Plantmicrobe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18PubMedCrossRefGoogle Scholar
  18. Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632. doi: 10.1128/AEM.02756-09 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bleeker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plant. Annu Rev Cell Dev Biol 16:1–18CrossRefGoogle Scholar
  20. Blom D, Fabbri C, Connor EC et al (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. PMID:21933319; http://dx.doi.org/10.1111/j.1462-2920.2011.02582.xPubMedCrossRefGoogle Scholar
  21. Bonfante P, Genre A (2015) Arbuscular mycorrhizal dialogues: do you speak ‘plantish’ or ‘fungish’? Trends Plant Sci 20:150–154. doi: 10.1016/j.tplants.2014.12.002 PubMedCrossRefGoogle Scholar
  22. Bottini R, Cassán F, Piccoli P et al (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503PubMedCrossRefGoogle Scholar
  23. Boukhalfa H, Lack J, Reilly SD, Hersman L, Neu MP et al (2003) Siderophore production and facilitated uptake of iron and plutonium in P. putida. AIP Conf Proc 673:343–344CrossRefGoogle Scholar
  24. Bressan M, Roncato MA, Bellvert F et al (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257. doi: 10.1038/ismej.2009.68 PubMedCrossRefGoogle Scholar
  25. Caetano-Anolles G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382PubMedCrossRefGoogle Scholar
  26. Cheng Z, Park E, Glick BRet al. (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918PubMedCrossRefGoogle Scholar
  27. Cleason A (2006) Volatile organic compounds from microorganisms. Ph.D. thesis, Umeå University, UmeåGoogle Scholar
  28. Corral-Lugo A, Daddaoua A, Ortega A et al (2016) Rosmarinic acid is a homo-serine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal 409(9):ra1CrossRefGoogle Scholar
  29. d’Angelo-Picard C, Faure D, Penot I et al (2005) Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 7:1796–1808. doi: 10.1111/j.1462- 2920.2005.00886.x PubMedCrossRefGoogle Scholar
  30. De Meyer G, Capieau K, Audenaert K et al (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant-Microbe Interact 12:450–458PubMedCrossRefGoogle Scholar
  31. De Vleesschauwer D, Hofte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281CrossRefGoogle Scholar
  32. De Vleesschauwer D, Höfte M, Loon LCV et al (2009) Rhizobacteria induced systemic resistance. In: Van Loon LC (ed) Advances in botanical research. Academic, New York, pp 223–281Google Scholar
  33. DeAngelis KM, Lindow SE, Firestone MK et al (2008) Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiol Ecol 66:197–207. doi: 10.1111/j.1574-6941.2008.00550.x PubMedCrossRefGoogle Scholar
  34. Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96. doi: 10.1016/j.chembiol.2006.11.014 PubMedCrossRefGoogle Scholar
  35. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097. doi: 10.1105/tpc.7.7.1085 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dong YH, Xu JL, Li XZ et al (2000) AiiA, an enzyme that inactivates the acyl homoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3353PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dong YH, Wang LH, Xu JL et al (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817. doi: 10.1038/35081101 PubMedCrossRefGoogle Scholar
  38. Eberl L (1999) N-acyl-homoserine lactone mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 22:493–506. doi: 10.1016/S0723-2020(99)80001-0 PubMedCrossRefGoogle Scholar
  39. Effmert U, Kalderás J, Warnke R et al (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703PubMedCrossRefGoogle Scholar
  40. Elasri M, Delorme S, Lemanceau P et al (2001) Acyl homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209. doi: 10.1128/AEM.67.3.1198-1209.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fahad S, Hussain S, Bano S et al (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921CrossRefGoogle Scholar
  42. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fisher RF, Long SR (1992) Rhizobium plant signal exchange. Nature 357:655–660PubMedCrossRefGoogle Scholar
  44. Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081PubMedCrossRefGoogle Scholar
  45. Gao M, Teplitski M, Robinson JB et al (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834. doi: 10.1094/MPMI.2003.16.9.827 PubMedCrossRefGoogle Scholar
  46. Garbeva P, Hordijk C, Gerards S et al (2014) Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol 5:289. doi: 10.3389/fmicb.2014.00289 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 252:1–7CrossRefGoogle Scholar
  48. Goh C-H, Veliz Vallejos DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39(7):826–839PubMedPubMedCentralCrossRefGoogle Scholar
  49. Groenhagen U, Baumgartner R, Bailly A et al (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906. doi: 10.1007/s10886-013-0315-y PubMedCrossRefGoogle Scholar
  50. Grover A, Mittal D, Negi M, Lavania D et al (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 20:38–47. doi: 10.1016/j.plantsci.2013.01.005 CrossRefGoogle Scholar
  51. Gutierrez-Luna FM, Lopez-Bucio J, tamirano-Hernandez J et al (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83. doi: 10.1007/s13199-010-0066-2 CrossRefGoogle Scholar
  52. Gutiérrez-Manero FJ, Ramos B, Probanza A et al (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211CrossRefGoogle Scholar
  53. Guttman DS, McHardy AC, Schulze-Lefert P et al (2014) Microbial genome-enabled insights into plant-microorganism interactions. Nat Rev Genet 15:797–813. doi: 10.1038/nrg3748 PubMedCrossRefGoogle Scholar
  54. Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant – microbe interactions. J Exp Bot 63:3429–3444. doi: 10.1093/jxb/err430 PubMedCrossRefGoogle Scholar
  55. Hernandez JP, de-Bashana LE, Rodriguez DJ et al (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol 45:88–93CrossRefGoogle Scholar
  56. Jacometti MA, Wratten SD, Walter M et al (2010) Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust J Grape Wine Res 16:154–172CrossRefGoogle Scholar
  57. Jing YD, He ZL, Yang XE et al (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ (Sci) 8(3):192–207CrossRefGoogle Scholar
  58. Joo GJ, Kim YM, Lee KIJ et al (2004) Growth promotion of red pepper seedlings and the production of gibberellins by Bacillus cereus, Bacillus mycoides, Bacillus pumilus. Biotechnol Lett 26:487–491PubMedCrossRefGoogle Scholar
  59. Kai M, Haustein M, Molina F et al (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012PubMedCrossRefGoogle Scholar
  60. Kakkar A, Nizampatnam NR, Kondreddy A et al (2015) Xanthomonas campestris cell–cell sig-nalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J Exp Bot 66:6697–6714PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kondorsi A, Schultze M (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57CrossRefGoogle Scholar
  62. Lamers LP, van Diggelen JM, den Camp HJ et al (2012) Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Front Microbiol 3:156. doi: 10.3389/fmicb.2012.00156 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lamont IL, Beare PA, Ochsner U et al (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. PNAS 99:7070–7077. doi:pnas.orgcgidoi 10.1073pnas.092016999CrossRefGoogle Scholar
  64. Lazdunski AM, Ventre I, Sturgis JN et al (2004) Regulatory circuits and communication in Gram negative bacteria. Nat Rev Microbiol 2:581–592PubMedCrossRefGoogle Scholar
  65. Lee B, Farag MA, Park HB et al (2012) Induced resistance by a long chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7:e48744PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lee s, Yap M, Behringer G, Hung R et al (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3:7. doi: 10.1186/s40694-016-0025-7 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Liu X, Bimerew M, Ma Y et al (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305. doi: 10.1111/j.1574-6968.2007.00681.x PubMedCrossRefGoogle Scholar
  68. Mandal SM, Chakraborty D, Dey S et al (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368PubMedPubMedCentralCrossRefGoogle Scholar
  69. Masalha J, Kosegarten H, Elmaci Ö et al (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439CrossRefGoogle Scholar
  70. Matzanke BF (1991) Structures, coordination chemistry and functions of microbial iron chelates. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, Boca Raton, pp 15–64Google Scholar
  71. Meena KK, Sorty AM, Bitla UM et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:868. doi: 10.3389/fpls.2017.00172 CrossRefGoogle Scholar
  72. Meziane H, Van Der Sluis I, Van Loon LC et al (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185PubMedCrossRefGoogle Scholar
  73. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  74. Mimmo T, Hann S, Jaitz L et al (2011) Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L. Plant Physiol Biochem 49:1272–1278. doi: 10.1016/j.plaphy.2011.08.012 PubMedCrossRefGoogle Scholar
  75. Monnet V, Juillard V, Gardan R et al (2014) Peptide conversations in gram-positive bacteria. Crit Rev Microbiol 42:339–351. doi:http://dx.doi.org/10.3109/1040841X.2014.948804PubMedGoogle Scholar
  76. Moore BD, Andrew RL, Kühlheim C et al (2014) Explaining intra specific diversity in plant secondary metabolites in an ecological context. New Phytol 201(733):750. doi: 10.1111/nph.12526 Google Scholar
  77. Morrissey JP, Walsh UF, O’Donnell A, Moenne-Loccoz Y, O’Gara F et al (2002) Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81:599–606PubMedCrossRefGoogle Scholar
  78. Morrissey JP, Dow JM, Mark GL et al (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926PubMedPubMedCentralCrossRefGoogle Scholar
  79. Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567. doi: 10.1021/cr900112r PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nagoba B, Vedpathak D (2011) Medical applications of siderophores. Eur J Gen Med 8:229–235Google Scholar
  81. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. doi: 10.1146/annurev-genet-102108-134304 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J et al (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pang Y, Liu X, Ma Y et al (2009) Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268. doi: 10.1007/s10658- 008-9411-1 CrossRefGoogle Scholar
  84. Persello-Cartieaux F, Nussaume L, Robaglia C et al (2003) Tales from the underground: molecular. Plant Cell Environ 26:189–199CrossRefGoogle Scholar
  85. Phillips DA, Torrey JG (1972) Studies on cytokinin production by Rhizobium. Plant Physiol 49:11–15. doi: 10.1104/pp.49.1.11 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Pieterse CMJ, Van Pelt JA, Ton J et al (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134CrossRefGoogle Scholar
  87. Pieterse CM, Van Der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. doi: 10.1146/annurevcellbio-092910-154055 PubMedCrossRefGoogle Scholar
  88. Postma J, Montanari M, van den Boogert PHJF et al (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163CrossRefGoogle Scholar
  89. Robert-Seilaniantz A, Grant M, Jones JDG et al (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343. doi: 10.1146/annurevphyto-073009-114447 PubMedCrossRefGoogle Scholar
  90. Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol 278:1–9. doi: 10.1111/j.1574-6968.2007.00918 CrossRefGoogle Scholar
  91. Ryan PR, Dessaux Y, Thomashow LS et al (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383. doi: 10.1007/s11104-009-0001-6 CrossRefGoogle Scholar
  92. Ryu CM, Farag MA, Hu CH et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ryu CM, Farag MA, Hu CH et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. http://dx.doi.org/10.1104/pp.103.026583 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Saleem M, Arshad M, Hussain S et al (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefGoogle Scholar
  95. Salmeron V, Martinez-Toledo MV, Gonzalez-Lopez J et al (1990) Nitrogen fixation and production of auxins gibberellins and cytokinins by an Azotobacter chroococcum strain isolated from the root of Zea mays in the presence of insoluble phosphate. Chemosphere 20:417–422CrossRefGoogle Scholar
  96. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. PMID: 17653361; http://dx.doi.org/10.1039/b507392hPubMedCrossRefGoogle Scholar
  97. Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30. doi: 10.3389/fpls.2013.00030 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Simões M, Simões LC, Cleto S, Machado I, Pereira MO, Vieira MJ (2007) Antimicrobial mechanisms ofortho - phthalaldehyde action. J Basic Microbiol 47(3):230–242PubMedCrossRefGoogle Scholar
  99. Singh UB, Malviya D, Wasiullah et al (2016) Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.) Microbiol Res 192:300–312PubMedCrossRefGoogle Scholar
  100. Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia l) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180(5):872–882PubMedCrossRefGoogle Scholar
  101. Soto MJ, Fernandez-Aparicio MN, Castellanos-Morales V et al (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385CrossRefGoogle Scholar
  102. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438. doi: 10.1101/cshperspect.a001438 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Steinkellner S, Lendzemo V, Langer I et al (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions. Molecules 12:1290–1306. doi: 10.3390/12071290 PubMedCrossRefGoogle Scholar
  104. Strobel GA, Miller RV, Miller C et al (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926PubMedCrossRefGoogle Scholar
  105. Strobel GA, Dirksie E, Sears J, Markworth C et al (2001) Volatile antimicrobials from a novel endophytic fungus. Microbiology 147:2943–2950PubMedCrossRefGoogle Scholar
  106. Subramanian S, Smith DL (2015) Bacteriocins from the rhizosphere microbiome – from an agriculture perspective front. Plant Sci 6:909. doi: 10.3389/fpls.2015.00909 Google Scholar
  107. Supanekar SV, Sorty AM (2013) Siderophoregenic Klebsiella pneumoniae SUP II from wheat (Triticum aestivum) rhizoplane. PARIPEX-Indian J Res 7:243–245Google Scholar
  108. Supanekar S, Sorty A, Raut A (2013a) Study of catethol siderophore from a newly isolated Azotobacter sp. for its antimicrobial property. J Microbiol Biotechnol Food Sci 3:270–273Google Scholar
  109. Supanekar SV, Sorty AM, Raut AA (2013b) Catechol siderophore produced by Klebsiella pneumoniae isolated from rhizosphere of Saccharum Officinarum L. Int J Sci Res 5:423–425Google Scholar
  110. Timmusk S, Wagner EG (1999) The plant growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959PubMedCrossRefGoogle Scholar
  111. Tjamos SE, Flemetakis E, Paplomatas EJ et al (2005) Induction of resistance to Verticillium dahlia in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant-Microbe Interact 18:555–561PubMedCrossRefGoogle Scholar
  112. Van de Mortel JE, De Vos RCH, Dekkers E et al (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188PubMedPubMedCentralCrossRefGoogle Scholar
  113. Van Loon LC, Bakker PAHM, Pieterse CMJ et al (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  114. Walsh UF, Morrissey JP, O’Gara F et al (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295PubMedCrossRefGoogle Scholar
  115. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  116. Webster G, Jain V, Davey MR et al (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21:373–383CrossRefGoogle Scholar
  117. Welbaum G, Sturz AV, Dong Z, Nowak J et al (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193CrossRefGoogle Scholar
  118. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefGoogle Scholar
  119. Yang C-H, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66(1):345–351PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yasuda M, Isawa T, Shinozaki S et al (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599PubMedCrossRefGoogle Scholar
  121. Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150. doi: 10.1094/MPMI-06-11- 0179 PubMedCrossRefGoogle Scholar
  122. Zhang H, Kim MS, Krishnamachari V et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851PubMedCrossRefGoogle Scholar
  123. Zhang H, Kim MS, Sun Y et al (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe 21:737–744CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Utkarsh M. Bitla
    • 1
  • Ajay M. Sorty
    • 1
  • Kamlesh K. Meena
    • 1
    Email author
  • Narendra P. Singh
    • 1
  1. 1.School of Edaphic Stress ManagementICAR-National Institute of Abiotic Stress ManagementPuneIndia

Personalised recommendations