Skip to main content

Microbial Functions of the Rhizosphere

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

The rhizosphere is part of the soil surrounding the plant roots or being influenced by the plant roots. The exudates released from roots make it a site for complex biochemical activity. Microorganisms make up one of the dynamic parts of this rhizosphere, and affect soil and plant growth by various means. However, our absolute dependency on chemical fertilizers and other agrochemicals, although enhancing crop production to the desired levels required to feed the growing world population, has not shown sufficient concern for sustainability, leading to two serious problems, ecological imbalance and resource limitation. An ecological disturbance has been created through polluting soil and water, putting toxic agrochemicals into the food chain, threatening human and animal health, and developing resistance in pests. On the other hand, resources are diminishing as vital nutrients like phosphorus are limited and very soon there will be an extreme shortage of these nutrients because excessive consumption will make them no longer available. Therefore, balancing plant needs through microbe-mediated sources is becoming an urgent priority. The rhizosphere microflora have many beneficial effects on plant growth and health promotion. They can be successfully employed to partly substitute agrochemicals in the long term for sustainable farming. Understanding the roles of these microbes therefore becomes imperative for enhancing quality and quantity of agricultural products. In the quest to improve productivity, management of rhizosphere dynamics provides an important tool. Inoculation of microorganisms, adjustment of soil, nutrient management, genetic engineering-based approaches, etc. all represent ways of managing the rhizosphere for enhancing crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasdokht H (2008) The study of Azotobacter chroococum inoculation on yield and postharvest quality of wheat (Triticum aestivum). In: International meeting on soil fertility land management and agroclimatology, pp 885–889

    Google Scholar 

  • Abbasdokht H, Gholami A (2010) The effect of seed inoculation (Pseudomonas putida+ Bacillus lentus) and different levels of fertilizers on yield and yield components of wheat (Triticum aestivum L.) cultivars. World Acad Sci Eng Technol 68:979–983

    Google Scholar 

  • Achari GA, Ramesh R (2014) Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Int J Microbiol 2014.: Article ID 296521:14

    Article  CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. doi:10.1007/s00248-009-9531-y

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOABJ 3:39–46

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86(9):945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Malik A (2011) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2:12–12

    Article  Google Scholar 

  • Ahilandeswari K, Maheswari NU (2016) Co–inoculation of Azospirillum lipoferum and phosphate solubilizing microorganisms on the growth of rice (Oryza sativa L.) Int J Pure Appl Biosci 4:317–320

    Article  Google Scholar 

  • Akram W, Anjum T, Ali B (2016) Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium wilt. Front Plant Sci 7:498

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64(2):493–502

    Article  CAS  Google Scholar 

  • Anandaraj B, Delapierre LR (2010) Studies on influence of bioinoculants (Pseudomonas fluorescens, Rhizobium sp., Bacillus megaterium) in green gram. J Biosci Technol 1:95–99

    Google Scholar 

  • Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8(1):1

    Article  CAS  Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272(1–2):201–209

    Article  CAS  Google Scholar 

  • Auffan M, Rose, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641

    Article  CAS  PubMed  Google Scholar 

  • Baca BE, Elmerich C (2007) Microbial production of plant hormones. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 113–143

    Chapter  Google Scholar 

  • Bailey KL, Boyetchko SM, Angle TL et al (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52(3):221–229

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway? Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais HP et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Barat SP, Gupta A, Singh D, Srivastav A (2016) Production of liquid biofertilizer by using Azotobacter species and their effect on plant growth. Int J Curr Microbiol App Sci 5(7):654–659

    Article  Google Scholar 

  • Bashan Y, de Bashan LE (2005) Plant growth-promoting. Encycl Soils Environ 1:103–115

    Article  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum plant relationships: physiological, molecular, agricultural, and environmental advances. Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2013) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. doi:10.1007/s11104-013-1956-x

    Article  CAS  Google Scholar 

  • Bazilah ABI, Sariah M, Abidin MAZ et al (2011) Influence of carrier materials and storage temperature on survivability of Rhizobial inoculants. Asian J Plant Sci 10:331–337

    Article  Google Scholar 

  • Berg G (2014) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  Google Scholar 

  • Berry JP, Gantar M, Perez MH, Berry G, Noriega FG (2008) Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6:117–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskara V (2011) Comparative performance of liquid and lignite formulations of Azotobacter chroococcum and Bacillus megaterium (PSB) on aerobic rice (Oryza sativa L.). MSc thesis, University of Agricultural Sciences, Bengaluru, India

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. doi:10.1007/s11274-011-0979-9

    Article  CAS  PubMed  Google Scholar 

  • Biswas B, Gresshoff PM (2014) The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int J Mol Sci 15:7380–7397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92(1):37–62

    CAS  Google Scholar 

  • Brahmaprakash GP, Girisha HC, Navi V, Laxmipathy R, Hegde SV (2007) Liquid Rhizobium inoculant formulations to enhance biological nitrogen fixation in food legumes. J Food Legum 20:75–79

    Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valero JR et al (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342

    Article  CAS  Google Scholar 

  • Broekaert WF, Delauré SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416

    Article  CAS  PubMed  Google Scholar 

  • Buée M, De Boer W, Martin F, Van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321(1–2):189–212

    Article  CAS  Google Scholar 

  • Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuck S (2005) Effect of an arbuscular mycorrhizal fungus, G. mosseae and a rock-phosphate-solubilizing fungus, P. thomii in Mentha piperita growth in a soil less medium. J Basic Microbiol 45:182–189

    Article  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corey D, Amanda K, Joy B et al (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  Google Scholar 

  • Darbyshire JF, Greaves MP (1973) Bacteria and protozoa in the rhizosphere. Pestic Sci 4:349–360

    Article  Google Scholar 

  • Das AJ, Kumar M, Kumar R (2013) Plant growth promoting rhizobacteria (PGPR): an alternative of chemical fertilizer for sustainable, environment friendly agriculture. Res J Agric For Sci 1:21–23

    Google Scholar 

  • Dayamani KJ (2010) Formulation and determination of effectiveness of liquid inoculants of plant growth promoting rhizobacteria’. PhD thesis, University of Agricultural Sciences, Bengaluru, India

    Google Scholar 

  • Dayamani KJ, Brahmaprakash GP (2014a) Influence of form and concentration of the osmolyte in liquid inoculants of plant growth promoting bacteria. Int J Sci Res Publ 4(7):1–6

    Google Scholar 

  • Dayamani KJ, Brahmaprakash GP (2014b) Influence of form and concentration of the osmolytes in liquid inoculants formulations of plant growth promoting bacteria. Int J Sci Res Publ 4:1–6

    Google Scholar 

  • DeBach P (ed) (1964) The scope of biological control. In: Biological control of insect pests and weeds. Chapman and Hall Ltd, London, pp 3–20

    Google Scholar 

  • Djavaheri M, Blanco JM, Van Loon LC, Bakker PAHM (2009) Analysis of determinants of Pseudomonas fluorescens WCS374r involved in induced systemic resistance in Arabidopsis thaliana. Biol Control Fungal Bacterial Plant Pathog 43:109–111

    Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2):184–189

    Article  Google Scholar 

  • Esitken A, Yildiz H, Ercisli S, Donmez M, Turan M, Gunes A (2009) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124(1):62–66

    Article  CAS  Google Scholar 

  • Feng MG, Pu XY, Ying SH, Wang YG (2004) Field trials of an oil based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid for control of false use leafhopper Empoasca vitis on tea in S. china. Crop Prot 23:489–496

    Article  CAS  Google Scholar 

  • Feng H, Li Y, LiU Q (2013) Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. Afr J Microbiol Res 7(15):1311–1318

    Article  Google Scholar 

  • Fred EB, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. Univ. Wisconsin, Madison

    Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh SK, Pal S, Banerjee S, Chakraborty N (2015) In vitro study of lysis of cell wall preparation from Phomopsis vexans by lytic enzyme from some biocontrol agents. Int J Curr Microbiol App Sci 4:153–157

    Google Scholar 

  • Girisha HC, Brahmaprakash GP, Mallesha BC (2006a) Effect of osmoprotectant (PVP-40) on survival of Rhizobium in different inoculants formulation and nitrogen fixation in cowpea. Geobios 33:151–156

    Google Scholar 

  • Girisha HC, Brahmaprakash GP, Manjunath A (2006b) Liquid inoculant technology: a boon to pulse production. Biofertilizer Newsl 14(1):3–8

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Goenadi DH, Siswanto, Sugiarto Y (2000) Bioactivation of poorly soluble phosphate rocks with a phosphate solubilizing fungus. Soil Sci Soc Am J 64:927–932

    CAS  Google Scholar 

  • Griffiths BS (1994) Soil nutrient flow. In: Darbyshire JF (ed) Soil protozoa. CAB International, Wallingford, pp 65–91

    Google Scholar 

  • Guijarro B, Melgarejo P, Decal A (2007) Effect of stabilizers on the shelf life of Penicillium frequentans conidia and their efficacy as a bioagent against peach brown rot. J Food Microbiol 113:117–124

    Article  CAS  Google Scholar 

  • Guo QG, Dong WX, Li SZ, Lu XY, Wang PP, Zhang XY (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169:533–540

    Article  CAS  PubMed  Google Scholar 

  • Gupta P (2010) Studies on shelf–life of fly–ash based Azotobacter chroococcum formulation and its bio–efficacy in wheat. Res J Agric Biol Sci 6(3):280–282

    Google Scholar 

  • Harimuraleedharan, Seshadri S, Perumal K (2010) Booklet on biofertilizer (phosphobacteria). Shri AMM Murugappa Chettiar Research centre, Taramani

    Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873. doi:10.1007/s00253-013-5228-8

    Article  CAS  PubMed  Google Scholar 

  • Heydari A, Gharedaghli A (2007) Integrated pest management on cotton in Asia and North Africa. INCANA Press, Tehran

    Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78. (Originals not seen)

    Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265

    Article  CAS  Google Scholar 

  • Hynes RK, Boyetchko SM (2006) Research initiatives in the act science of biopesticides formulation. Soil Boil Biochem 38:845–849

    Article  CAS  Google Scholar 

  • Idi A, Md Nor MH, Abdul Wahab MF, Ibrahim Z (2014) Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev Environ Sci Biotechnol 14:271–285

    Article  CAS  Google Scholar 

  • Islam TM, Hashidoko Y, Deora A, Ito T, Tahara S (2010) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  CAS  Google Scholar 

  • Jahanian A, Chaichi MR, Rezaei K, Rezayazdi K, Khavazi K (2012) The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4:923–929

    Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458

    Article  Google Scholar 

  • Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil 173:103–109

    Article  CAS  Google Scholar 

  • Jung G, Mugnier J, Diem HG et al (1982) Polymer entrapped Rhizobium as an inoculant for legume. Plant Soil 65:219–231

    Article  CAS  Google Scholar 

  • Kalita M, Bharadwaz M, Dey T, Gogoi K, Dowarah P, Unni BG, Ozah D, Saikia I (2015) Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops. Indian J Exp Biol 53(1):56–60

    PubMed  Google Scholar 

  • Kang SC, Ha CG, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr Sci 82:439–442

    CAS  Google Scholar 

  • Kang SM, Khan AL, Waqas M et al (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682

    Article  CAS  Google Scholar 

  • Kasiamdar RS, Smith SE, Smith FA, Scott ES (2001) Influence of the mycorrhizal fungus, Glomus coronatum, and soil phosphorus on infection and disease caused by binucleate Rhizoctonia and Rhizoctonia solani on mung bean (Vigna radiata). Plant Soil 238:235–244

    Article  Google Scholar 

  • Khalid A, Tahir S, Arshad M, Zahir ZA (2005) Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Soil Res 42(8):921–926

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture- a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Ann Rev Plant Biol 54(1):307–328

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppression in soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 65(1):3–9

    Article  CAS  Google Scholar 

  • Takanashi K, Sasaki T, Kan T, Saida Y, Sugiyama A, Yamamoto Y, Yazaki K (2016) A dicarboxylate transporter, LjALMT4, mainly expressed in nodules of Lotus japonicas. MPMI 29(7):584–592

    Article  CAS  PubMed  Google Scholar 

  • Kornochalert N, Kantachote D, Chaiprapat S, Techkarnjanaruk S (2013) Use of Rhodopseudomonas palustris P1 stimulated growth by fermented pineapple extract to treat latex rubber sheet wastewater to obtain single cell protein. Ann Microbiol 64:1021–1032

    Article  CAS  Google Scholar 

  • Kottke I, Kovacs GM (2013) Mycorrhizae- Rhizosphere determinant of plant communities: what can we learn from tropics? In: Eshel A, Beeckman T (eds) Plant roots: the hidden half, 4th edn. CRC Press, Taylor and Francis Group, Hoboken. pp 40; 1–10

    Google Scholar 

  • Krishnaveni MS (2010) Studies on phosphate solubilizing bacteria (PSB) in rhizosphere and non-rhizosphere soils in different varieties of foxtail millet (Setaria italica). Int J Agric Food Sci Tech 1(1):23–39

    Google Scholar 

  • Kumar V (2014) Characterization, bio-formulation development and shelf-life studies of locally isolated bio-fertilizer strains. Octa J Env Res 2(1):32–37

    Google Scholar 

  • Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci 91(7):885–890

    CAS  Google Scholar 

  • Kumara Swamy CA, Raghunandan BL, Chandrashekhar M, Brahmaprakash GP (2010) Bio-activation of rock phosphate vis- a- vis seed treatment with phosphorus solubilizing microbes (PSM) in enhancing P nutrition in cowpea and ragi. Indian J Sci Technol 3(7):689–692

    Google Scholar 

  • Lavanya G, Sahu PK, Manikanta DS, Brahmaprakash GP (2015) Effect of fluid bed dried formulation in comparison with lignite formulation of microbial consortium on finger millet (Eleucine coracana Gaertn.) J Pure Appl Microbiol 9(2):193–199

    CAS  Google Scholar 

  • Lee SK, Lur HS, Lo KJ, Cheng KC, Chuang CC, Tang SJ, Yang ZW, Liu CT (2016) Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Appl Microbial Biotechnol 6:1–1

    Google Scholar 

  • Li Y, Gu Y, Li J, Xu M, Wei Q, Wang Y (2015) Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Front Microbiol 6:1–15

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar Showkat A, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytology 2(10):42–54

    Google Scholar 

  • Maheswari NU, Kalaiyarasi M (2015) Comparative study of liquid biofertilizer and carrier based biofertilizer on green leafy vegetables. Int J Pharm Sci Rev Res 33(1.) 42):229–232

    CAS  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massaccesi L, Benucci GMN, Gigliotti G, Cocco C, Corti G, Agnelli A (2015) Rhizosphere effect of three plant species of environment under periglacial conditions (Majella Massif, central Italy). Soil Biol Biochem 89:184–195

    Article  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux JP, Defago G (1994) Induction of systemic resistance to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Melo ISD, Valente AMMP, Kavamura VN, Vilela ESD, Faull JL (2014) Mycoparasitic nature of Bionectria sp. strain 6.21. J Plant Protect Res 54(4):327–333

    Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Mishra BK, Dahich SK (2010) Methodology of nitrogen biofertilizer production. J Adv Dev Res 1:3–6

    Article  Google Scholar 

  • Navi V (2004) Development of liquid inoculant formulations for Bradyrhizobium sp. (Arachis), Azospirillum lipoferum and Azotobacter chroococcum. PhD thesis, University of Agricultural Sciences, Bengaluru, India

    Google Scholar 

  • Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci 7(1):540–556

    Google Scholar 

  • Nepolean P, Jayanthi R, Vidhya PR, Balamurugan A, Kuberan T, Beulah T, Premkumar R (2012) Role of biofertilizers in increasing tea productivity. Asian Pac J Trop Biomed 2:1443–1445

    Article  Google Scholar 

  • Neumann G, Romheld V (2001) The release of root exudates as affected by the plants physiological status. In: Pinto R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 41–93

    Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15(2):327

    Google Scholar 

  • Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61:7–26

    Article  CAS  Google Scholar 

  • O’Callaghan M, Gerard EM (2005) Establishment of Serratia entomophila in soil from a granular formulation. In: New Zealand plant protection, vol 58. Proceedings of a conference, Wellington, New Zealand, 9–11 August 2005. New Zealand Plant Protection Society, pp 122–125

    Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3(4):263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal KK, McSpadden GB (2006) Biological control of plant pathogens. Plant Health Instr. doi:10.1094/PHI-A-2006-1117-02

  • Pandya U, Saraf M (2010) Application of fungi as a biocontrol agent and their biofertilizer potential in agriculture. J Adv Dev Res 1(1):90–99

    Google Scholar 

  • Pant R, Pandey P, Kotoky R (2016) Rhizosphere mediated biodegradation of 1,4-dichlorobenzene by plant growth promoting rhizobacteria of Jatropha curcas. Ecol Eng 94:50–56

    Article  Google Scholar 

  • Parmar HJ, Bodar NP, Lakhani HN, Patel SV, Umrania VV, Hassan MM (2015) Production of lytic enzymes by Trichoderma strains during in vitro antagonism with Sclerotium rolfsii, the causal agent of stem rot of groundnut. Afr J Microbiol Res 9(6):365–372

    Article  CAS  Google Scholar 

  • Paul E, Clark F (1996) Soil microbiology and biochemistry, 2nd edn. Academic, San Diego

    Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol Plant 118(1):10–15

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Ponmurugan P, Gopi C (2006) Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. J Agron 5:600–604

    Article  Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphate by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Quispel A (1974) Biology of nitrogen fixation. North Holland Press, Amsterdam, p 748

    Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Rashid M, Khalil S, Ayub N, Alam S, Latif F (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7(2):187–196

    Article  Google Scholar 

  • Ratnayale M, Leonard R, Menge A (1978) Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal infection. New Phytol 81:543–552

    Article  Google Scholar 

  • Raychaudhuri S, Yadav AK, Raychaudhuri M (2007) Changing face of Rhizobium taxonomy. Biofertilizer Newsl 15(1):3–10

    Google Scholar 

  • Rovira AA, Foster RC, Martin JK (1978) Origin nature and nomenclature of the organic materials in the rhizosphere. In: Harley JL, Scott Russel R (eds) The soil root interface. Academic, London, pp 1–4

    Google Scholar 

  • Rueda D, Valencia G, Soria N, Rueda BB, Manjunatha B, Kundapur RR, Selvanayagam M (2016) Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. J Appl Pharma Sci 6(01):048–054

    Article  Google Scholar 

  • Sahu PK, Brahmaprakash GP (2016) Formulations of biofertilizers–approaches and advances. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 179–198

    Chapter  Google Scholar 

  • Sahu PK, Lavanya G, Brahmaprakash GP (2013) Fluid bed dried microbial inoculants formulation with improved survival and reduced contamination level. J Soil Biol Ecol 33(1and2):81–94

    Google Scholar 

  • Sahu PK, Sharma L, Gupta A, Renu (2016) Rhizospheric and endophytic beneficial microorganisms: treasure for biological control of plant pathogens. In: Santra S, Mallick A (eds) Recent biotechnological applications in India. ENVIS centre on Environmental Biotechnology, University of Kalyani, West Bengal, pp 50–63

    Google Scholar 

  • Sandra AI, Wright CH, Zumoff LS, Steven VB (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:282–292

    Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of spp. for biological control of Plant diseases. Phytopathology 94(11):1267–1271

    Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-Diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physio-logical parameters influencing its production. Appl Environ Microbiol 58:353–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma MP, Sharma SK, Dwivedi A (2010) Liquid biofertilizer application in soybean and regulatory mechanisms. Agriculture Today, pp 44–45

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    Article  CAS  PubMed  Google Scholar 

  • Silvester WB (1975) Ecological and economical significance of the non- legume symbioses’. In: Newton WE, Nyman CJ (eds) 1st Int. symposium on nitrogen fixation. Washington State Univ. Press, Washington, DC, pp 489–586

    Google Scholar 

  • Singh G, Mukerji KG (2006) Root exudates as determinant of rhizospheric microbial biodiversity. In: Microbial activity in the Rhizoshere. Springer, Berlin, pp 39–53

    Chapter  Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38(6):485–492

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Sridhar V, Brahmaprakash GP, Hegde SV (2004) Development of a liquid inoculant using osmoprotectants for phosphate solubilizing bacteria. Karnataka J Agric Sci 17:251–257

    Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crop Res 65:249–258. doi:10.1016/s0378-4290(99)00090-8

    Article  Google Scholar 

  • Stolp H (1988) Microbial ecology: organisms, habitats, activities. Cambridge University Press, New York

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.) Int J Curr Microbiol App Sci 5(3):890–901

    Article  Google Scholar 

  • Surendra Gopal K, Baby A (2016) Enhanced shelf life of Azospirillum and PSB through addition of chemical additives in liquid formulations. Int J Sci Environ Technol 5(4):2023–2029

    Google Scholar 

  • Swapna G, Divya M, Brahmaprakash GP (2016) Survival of microbial consortium in granular formulations, degradation and release of microorganisms in soil. Ann Plant Sci 5(5):1348–1352

    Article  Google Scholar 

  • Taylor IB, Burbidge A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51(350):1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Thomas GV (1993) Biological nitrogen fixation by asymbiotic and non leguminous symbiotic systems. In: Thampan PK (ed) Organics in soil health and crop production. Peekey Tree Crops Development Foundation, Cochia, pp 105–124

    Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N, Singleton PW, Boonkerd N (2007) Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives. Sci Asia 33:69–77

    Article  CAS  Google Scholar 

  • Tiwari KN (2001) Phosphorus needs of Indian soils and crops. Better Crop Int 15(2):6

    Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47(8):907–916

    Article  CAS  Google Scholar 

  • Uren NC (2001) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 521–574

    Chapter  Google Scholar 

  • Van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. MMBR 61(2):121–135

    PubMed  PubMed Central  Google Scholar 

  • Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:8711–8716

    Article  PubMed  PubMed Central  Google Scholar 

  • Veeger C, Haaker H, Laane, C (1981) Energy transduction and nitrogen fixation. In: Current perspectives in nitrogen fixation. Proceedings of 4th International Symposium on Nitrogen Fixation, Canberra, pp 101–104

    Google Scholar 

  • Velineni S, Brahmaprakash GP (2011) Survival and phosphate solubilizing ability of Bacillus megaterium in liquid inoculants under high temperature and desiccation stress. J Agric Sci Technol 13:795–802

    CAS  Google Scholar 

  • Vora MS, Shelat HN, Vyas RV (2008) Handbook of biofertilizers and microbial pesticides, 1st publication. Satish Serial Publishing House, India, pp 13–15

    Google Scholar 

  • Vranova V, Rejsek K, Formanek P (2013) Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil. Sci World J 15. http://dx.doi.org/10.1155/2013/524239. Article ID 524239

  • Waisel Y, Eshel A (2002) Functional diversity of various constituents of a single root system. In: Waisel Y, Eshel, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 157–174

    Chapter  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Walpola B, Yoon MH (2013) Phosphate solubilizing bacteria: assessment of their effect on growth promotion and phosphorous uptake of mung bean (Vigna radiata [L.] R. Wilczek). Chil J Agric Res 73(3):275–281

    Article  Google Scholar 

  • Walters DR, McRoberts N (2006) Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci 11(12):581–586

    Article  CAS  PubMed  Google Scholar 

  • Wani SP, Lee KK (2002) Population dynamics of nitrogen fixing bacteria associated with pearl millet (P. americanum L.). In: Biotechnology of nitrogen fixation in the tropics. University of Pertanian, Malaysia, pp 21–30

    Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L (2007) Role of 2,4- diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20

    Article  CAS  PubMed  Google Scholar 

  • Wong WT, Tseng CH, Hsu SH, Lur HS, Mo CW, Huang CN, Hsu SC, Lee KT, Liu CT (2014) Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes Environ 29:303–313. doi:10.1264/jsme2.ME14056

    Article  PubMed  PubMed Central  Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. In: Proceedings of the greatplains inoculant forum. Plant Management Network, Saskatoon

    Google Scholar 

  • Yadav AK (2009) Glimpses of fertilizer (control) order, 1985 for biofertilizers (amendment, November 2009), National center for organic farming, Department of Agriculture and cooperation, Government of India. Biofertilizer Newslett 17(2):11–14

    Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Feth el Zahar H, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183

    Article  CAS  Google Scholar 

  • Zwart KB, Kuikman PJ, van Veen JA (1994) Rhizosphere protozoa: their significance in nutrient dynamics. In: Darbyshire JF (ed) Soil protozoa. CAB International, Wallingford, pp 93–122

    Google Scholar 

Download references

Acknowledgements

The Department of Agricultural Microbiology, University of Agricultural Sciences, GKVK, Bangaluru, India is gratefully acknowledged for continuous support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Brahmaprakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Brahmaprakash, G.P., Sahu, P.K., Lavanya, G., Nair, S.S., Gangaraddi, V.K., Gupta, A. (2017). Microbial Functions of the Rhizosphere. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_10

Download citation

Publish with us

Policies and ethics