Skip to main content

Light-Emitting Diodes (LEDs) for Improved Nutritional Quality

  • Chapter
  • First Online:
Book cover Light Emitting Diodes for Agriculture

Abstract

Light is one of the key factors in plant production. Phytochemical composition and content as well as nutritional and postharvest quality depend on light quality and quantity in many plant species, especially in leafy vegetables, many of which are grown in controlled environments where artificial or supplemental illumination is needed. With the development of light-emitting diode (LED) technology, the manipulation of light conditions in order to improve nutritional value in plants has become more viable. The most important findings of recent decades concerning LED illumination, which involve changes in the nutritional quality of vegetables with respect to the content of ascorbic acid, anthocyanins, carotenoids, phenols, tocopherols and other related phytoconstituents subjected to light quality and quantity, are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi ASR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco (Nicotiana tabacum L.). Plant Physiol 143:1720–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agati G, Galardi C, Gravano E, Romani A, Tattini M (2002) Flavonoid distribution in tissues of Phillyrea latifolia as estimated by microspectrofluorometry and multispectral fluorescence microimaging. Photochem Photobiol 76:350–360

    Article  CAS  PubMed  Google Scholar 

  • Agati P, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45

    Article  CAS  PubMed  Google Scholar 

  • Avercheva OV, Berkovich YA, Erokhin AN, Zhigalova TV, Pogosyan SI, Smolyanina SO (2009) Growth and photosynthesis of chinese cabbage plants grown under light-emitting diode-based light source. Russ J Plant Physiol 56:14–21

    Article  CAS  Google Scholar 

  • Avercheva O, Berkovich YA, Smolyanina S, Bassarskaya E, Pogosyan S, Ptushenko V, Erokhin A, Zhigalova T (2014) Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue-red LED assembly designed for space agriculture. Adv Space Res 53:1574–1581

    Article  CAS  Google Scholar 

  • Balasundram N, Sudram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Bian ZH, Yang QC, Liu WK (2015) Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J Sci Food Agric 95:869–877

    Article  CAS  PubMed  Google Scholar 

  • Bliznikas Z, Žukauskas A, Samuolienė G, Viršilė A, Brazaitytė A, Jankauskienė J, Duchovskis P, Novičkovas A (2012) Effect of supplementary pre-harvest led lighting on the antioxidant and nutritional properties of green vegetables. Acta Hortic 939:85–91

    Article  Google Scholar 

  • Botella-Pavia P, Rodriguez-Concepcion M (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plant 126:369–381

    Article  CAS  Google Scholar 

  • Bouly J, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391

    Article  CAS  PubMed  Google Scholar 

  • Braidot E, Petrussa E, Peresson C, Patui S, Bertolini A, Tubaro F, Wählby U, Coan M, Vianello A, Zancani M (2014) Low-intensity light cycles improve the quality of lamb’s lettuce (Valerianella olitoria L. Pollich) during storage at low temperature. Postharvest Biol Technol 90:15–23

    Article  CAS  Google Scholar 

  • Brazaitytė A, Jankauskienė J, Novičkovas A (2013) The effects of supplementary short-term red LEDs lighting on nutritional quality of Perilla frutescens L. microgreens. Rural Dev 6:54–58

    Google Scholar 

  • Brazaitytė A, Sakalauskienė S, Samuolienė G, Jankauskienė J, Viršilė A, Novičkovas A, Sirtautas R, Miliauskienė J, Vaštakaitė V, Dabašinskas L, Duchovskis P (2015a) The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem 173:600–606

    Article  PubMed  CAS  Google Scholar 

  • Brazaitytė A, Viršilė A, Jankauskienė J, Sakaulauskienė S, Samuolienė G, Sirtautas R, Novičkovas A, Dabašinskas L, Miliauskienė J, Vaštakaitė V, Bagdonavičienė A, Duchovskis P (2015b) Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. Int Agrophys 29:13–22

    Article  CAS  Google Scholar 

  • Brazaitytė A, Jankauskienė J, Viršilė A, Samuolienė G, Sakalauskienė S, Sirtautas R, Novičkovas A, Dabašinskas L, Vaštakaitė V, Miliauskienė J, Bagdonavičienė A, Duchovskis P (2015c) Response of Brassicaceae microgreens to supplemental UV-A exposure. Nordic View to Sustain Rural Development. 25th NJF Congress, Riga, Latvia, p 52

    Google Scholar 

  • Brazaitytė A, Sakalauskienė S, Viršilė A, Jankauskienė J, Samuolienė G, Sirtautas R, Vaštakaitė V, Miliaukienė J, Duchovskis P, Novičkovas A, Dabašinskas L (2016a) The effect of short-term red lighting on Brassicaceae microgreens grown indoors. Acta Hortic 1123:177–183

    Article  Google Scholar 

  • Brazaitytė A, Viršilė A, Samuolienė A, Jankauskienė J, Sakalauskienė S, Sirtautas R, Novičkovas A, Dabašinskas L, Vaštakaitė V, Miliauskienė J, Duchovskis P (2016b) Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Hortic 1134:277–284

    Article  Google Scholar 

  • Carvalho IS, Cavaco T, Brodelius M (2011a) Phenolic composition and antioxidant capacity of six artemisia species. Ind Crops Prod 33:382–388

    Article  CAS  Google Scholar 

  • Carvalho R, Takaki M, Azevedo R (2011b) Plant pigments: the many faces of light perception. Acta Physiol Plant 33:241–248

    Article  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chen X, Guo W, Xue X, Wang L, Qiao X (2014) Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci Hortic 172:168–175

    Article  Google Scholar 

  • Chen X, Xue X, Guo W, Wang L, Qiao X (2016) Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Sci Hortic 200:111–118

    Article  CAS  Google Scholar 

  • Cheng Z, Moore J, Yu L (2006) High-throughput relative DPPH radical scavenging capacity assay. J Agri Food Chem 54:7429–7436

    Article  CAS  Google Scholar 

  • Costa L, Millan Montano Y, Carrión C, Rolny N, Guiamet JJ (2013) Application of low-intensity light pulses to delay postharvest senescence of Ocimum basilicum leaves. Postharvest Biol Technol 86:181–191

    Article  Google Scholar 

  • Cuttriss AJ, Cazzonelli CI, Wurtzel ET, Pogson BJ (2011) Carotenoids. Adv Bot Res 58:1–36

    Article  CAS  Google Scholar 

  • D’Souza C, Yuk H-G, Khoo GH, Zhou W (2015) Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Compr Rev Food Sci Food Saf 14:719–740

    Article  CAS  Google Scholar 

  • Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos Trans R Soc B Biol Sci. doi:10.1098/rstb.2013.0243

    Google Scholar 

  • DellaPenna D, Maeda H (2007) Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10:260–265

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Gilmore AM, Adams WW (1996) In vivo function of carotenoids in higher plants. FASEB J 10:403–412

    CAS  PubMed  Google Scholar 

  • Długosz-Grochowska O, Kołton A, Wojciechowska R (2016) Modifying folate and polyphenol concentrations in Lamb’s lettuce by the use of LED supplemental lighting during cultivation in greenhouses. J Funct Foods 26:228–237

    Article  CAS  Google Scholar 

  • Dorais M, Gosselin A (2002) Physiological response of greenhouse vegetable crops to supplemental lighting. Acta Hortic 280:59–67

    Article  Google Scholar 

  • Dougher TA, Bugbee B (2001) Evidence for yellow light suppression of lettuce growth. Photochem Photobiol 73:208–212

    Article  CAS  PubMed  Google Scholar 

  • Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochem Biophys Rev Can 1826:443–457

    CAS  Google Scholar 

  • Fan X, Zang J, Xu Z, Guo S, Jiao X, Liu X, Gao Y (2013) Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiol Plant 35:2721–2726

    Article  CAS  Google Scholar 

  • Flores-Perez U, Rodriguez-Concepcion M (2012) Carotenoids. In: Salter A, Wiseman H, Tucker GA (eds) Phytonutrients. Wiley, New York, pp 89–109

    Chapter  Google Scholar 

  • Folta KM, Maruhnich SA (2007) Green light: a signal to slow down or stop. J Exp Bot 58:3099–3111

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Whitelam GC (2004) Light signals, phytochromes and cross-talk with other environmental cues. J Exp Bot 55:271–276

    Article  CAS  PubMed  Google Scholar 

  • Gautier H, Massot C, Stevens R, Sérino S, Génard M (2009) Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Ann Bot 103:495–504

    Article  CAS  PubMed  Google Scholar 

  • Gruda N (2005) Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Cr Rev Plant Sci 24:227–247

    Article  CAS  Google Scholar 

  • Grusak MA (2002) Phytochemicals in plants: genomics-asisted plant improvement for nutritional and health benefits. Curr Opin Biotech 13:508–511

    Article  CAS  PubMed  Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutritiona and health. Ann Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  CAS  Google Scholar 

  • Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953–966

    Article  CAS  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  • Helsper JPFG, Ric de Vos CH, Maas FM, Jonker HH, Van Den Broeck HC, Jordi W, Sander Pot C, Paul Keizer LC, Schapendonk Ad HCM (2003) Response of selected antioxidants and pigments in tissues of Rosa hybrida and Fuchsia hybrida to supplemental UV-A exposure. Physiol Plant 117:171–178

    Article  CAS  Google Scholar 

  • Heuvelink E, Bakker MJ, Hogendonk L, Janse J, Kaarsemaker R, Maaswinkel R (2006) Horticultural lighting in the Netherlands: new developments. Acta Hortic 711:25–33

    Article  Google Scholar 

  • Hogewoning SW, Harbinson J (2007) Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf. J Exp Bot 58:453–463

    Article  CAS  PubMed  Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Ohta M, Tsuchiya H (2010) Enhanced accumulation of caffeic acid, rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. J Funct Foods 2:66–70

    Article  CAS  Google Scholar 

  • Johkan M, Shoji K, Goto F, Hashida S, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809–1814

    Google Scholar 

  • Khanam UKS, Oba S, Yanase E, Murakami Y (2012) Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J Funct Foods 4:979–987

    Article  CAS  Google Scholar 

  • Kim HH, Goins GD, Wheeler RM, Sager JC (2004) Green-light supplementation for enhanced lettuce growth under red- and blue-light emitting diodes. HortScience 39:1617–1622

    PubMed  Google Scholar 

  • Koga R, Meng T, Nakamura E, Miura C, Irino N, Devkota HP, Yahara S, Kondo R (2013) The effect of photo-irradiation on the growth and ingredient composition of young green barley (Hordeum vulgare). Agric Sci 4:185–194

    Google Scholar 

  • Kokalj D, Hribar J, Cigić B, Zlatić E, Demšar L, Sinkovič L, Šircelj H, Bizjak G, Vidrih R (2016) Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit. Food Technol Biotechnol 54:228–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopsell DA, Kopsell DE (2006) Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Sci 11:499–507

    Article  CAS  PubMed  Google Scholar 

  • Kopsell DA, Sams CE (2013) Increase in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J Am Soc Hortic Sci 138:31–37

    Google Scholar 

  • Kopsell DA, Pantanizopoulos NI, Sams CE, Kopsell DE (2012) Shoot tissue pigment levels increase in ‘Florida Broadleaf’ mustard (Brassica juncea L.) microgreens following high light treatment. Sci Hortic 140:96–99

    Article  CAS  Google Scholar 

  • Kopsell DA, Sams CE, Barickman TC, Morrow RC (2014) Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting. JASHS 139:469–477

    Google Scholar 

  • Kopsell DA, Sams CE, Morrow RC (2016) Interaction of light quality and fertility on biomass, shoot pigmentation and xanthophyll cycle flux in Chinese kale. J Sci Food Agric. doi:10.1002/jsfa.7814

    PubMed  Google Scholar 

  • Kwack Y, Kim KK, Hwang H, Chun C (2015) Growth and quality of sprouts of six vegetables cultivated under different light intensity and quality. Hortic Environ Biotechnol 56(4):437–443

    Article  Google Scholar 

  • Lee K, Lee SM, Park SR, Jung J, Moon JK, Cheong JJ, Kim M (2007a) Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing gamma-tocopherol level in lettuce (Lactuca Sativa L.). Mol Cell 24:301–306

    CAS  Google Scholar 

  • Lee SH, Tewari RK, Hahn EJ, Paek KY (2007b) Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. Plantlets. Plant Cell Tiss Org Cult 90:141–151

    Article  CAS  Google Scholar 

  • Lee SW, Seo JM, Lee MK (2014) Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. Ind Crops Prod 54:320–326

    Article  CAS  Google Scholar 

  • Lee MJ, Son KH, Oh MM (2016) Increase in biomass and bioactive compound in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biotechnol 57:139–147

    Article  Google Scholar 

  • Lefsrud MG, Kopsell DA, Kopsell DE, Curran-Celentano J (2006) Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiol Plant 127:624–631

    Article  CAS  Google Scholar 

  • Lefsrud M, Kopsell D, Wenzel A, Sheehan J (2007) Changes in kale (Brassica oleracea L. var. acephala) carotenoid and chlorophyll pigment concentrations during leaf ontogeny. Sci Hortic 112:136–141

    Article  CAS  Google Scholar 

  • Lefsrud MG, Kopsell DA, Sams CE (2008) Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43:2243–2244

    Google Scholar 

  • Li Q, Kubota C (2009) Effects of supplemental light quality in growth and phytochemicals of baby leaf lettuce. Env Exp Bot 67:59–64

    Article  CAS  Google Scholar 

  • Li T, Yang Q (2015) Advantages of diffuse light for horticultural production and perspectives for further research. Front Plant Sci. doi:10.3389/fpls.2015.00704

    Google Scholar 

  • Li H, Tang C, Xu Z, Liu X, Han X (2012) Effects of different light sources on the growth of non-heading chinese cabbage (Brassica campestris L.). JAS 4:262–273

    Google Scholar 

  • Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant, Cell Environ 31:587–601

    Article  CAS  Google Scholar 

  • Lin C (2002) Blue light receptors and signal transduction. Plant Cell S207–S225

    Google Scholar 

  • Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hortic 150:86–91

    Article  Google Scholar 

  • Lindoo SJ, Caldwell MM (1978) Ultraviolet-B radiation induced inhibition of leaf expansion and promoting of anthocyanin production. Plant Physiol 61:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Shi J, Ibarra AC, Kakuda Y, Xue SJ (2008) The scavenging capacity and synergistic effects of lycopene, vitamin E, Vitamin C, and β-carotene mixtures on the DPPH free radical. LWT—Food Sci Technol 41:1344–1349

    Article  CAS  Google Scholar 

  • Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP, Zhu X-G, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant, Cell Environ 29:315–330

    Article  CAS  Google Scholar 

  • Ma G, Zhang L, Setiawan CK, Yamawaki K, Asai T, Nishikawa F, Maezawa S, Sato H, Kanemitsu N, Kato M (2014) Effect of red and blue LED light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest broccoli. Postharvest Biol Technol 94:97–103

    Article  CAS  Google Scholar 

  • Maiani G, Caston MJ, Catasta G, Toti E, Cambrodón IG, Bysted A, Granado- Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, Böhm V, Mayer-Miebach E, Behsnilian D, Schlemmer U (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53:1–25

    Article  Google Scholar 

  • Matioc-Precup MM, Cachiţă-Cosma D (2013) The content in assimilating pigments of the cotyledons of the red cabbage plantlets illuminated with LEDs. Studia Universitatis “Vasile Goldiş”. Seria Ştiinţele Vieţii 23:45–48

    Google Scholar 

  • Mitchell CA, Both AJ, Bourget CM, Burr JF, Kubota C, Lopez RG, Morrow RC, Runkle ES (2012) LEDs: the future of greenhouse lighting. Chronica Hortic 52:6–10

    Google Scholar 

  • Mizuno T, Amaki W, Watanable H (2011) Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedling. Acta Hortic 907:179–184

    Article  CAS  Google Scholar 

  • Mohr H, Drumm-Herrel H, Oelmüller R (1984) Coaction of phytochrome and blue/UV light photoreceptors. In: Senger H (ed) Blue light effects in biological systems. Springer, Berlin, pp 6–19

    Chapter  Google Scholar 

  • Morrow RC (2008) LED lighting in horticulture. HortScience 43:1947–1950

    Google Scholar 

  • Mou B (2009) Nutrient content of lettuces and its improvement. Curr Nutr Food Sci 5:242–248

    Article  CAS  Google Scholar 

  • Ogawa T, Inoue Y, Kitajima M, Shibata K (1973) Action spectra for biosynthesis of chlorophylls a and b and β-carotene. Photochem Photobiol 18:229–235

    Google Scholar 

  • Ohashi-Kaneko K, Takase M, Kon N, Fujiwara K, Kurata K (2007) Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Eniviron Contr Biol 45:189–198

    Article  CAS  Google Scholar 

  • Ouzounis T, Parjikolaei BR, Fretté X, Rosenqvist E, Ottosen CO (2015) Pre-dawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front Plant Sci. doi:10.3389/fpls.2015.00019

    PubMed  PubMed Central  Google Scholar 

  • Page M, Sultana N, Paszkiewicz K, Florance H, Smirnoff N (2012) The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. Plant, Cell Environ 35:388–404

    Article  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Janovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defence transkripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian H, Liu T, Deng M, Miao H, Cai C, Shen W, Wang Q (2016) Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chem 196:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 20:933–956

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Romani A, Pinelli P, Galardi C (2002) Polyphenols in greenhouse and open-air-grow lettuce. Food Chem 79:337–342

    Article  CAS  Google Scholar 

  • Rosales MA, Cervilla LM, Sánchez-Rodríguez E, Cervilla LM, Sánchez-Rodríquez E, Rubio-Wilhelmi Mdel M, Blasco B, Ríos JJ, Soriano T, Castilla N, Romero L, Ruiz JM (2011) The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. J Sci Food Agric 91:152–162

    Article  CAS  PubMed  Google Scholar 

  • Samuolienė G, Brazaitytė A, Sirtautas R, Novičkovas A, Duchovskis P (2011a) Supplementary red-LED lighting affects phytochemicals and nitrate of baby leaf lettuce. J Food Agric Environ 9:271–274

    Google Scholar 

  • Samuolienė G, Urbonavičiūtė A, Brazaitytė A, Šabajevienė G, Sakalauskaitė J, Duchovskis P (2011b) The impact of LED illumination on antioxidant properties of sprouted seeds. Centr Eur J Biol 6(1):68–74

    Google Scholar 

  • Samuolienė G, Brazaitytė A, Sirtautas R, Sakalauskienė S, Jankauskienė J, Duchovskis P, Novičkovas A (2012a) The impact of supplementary short-term red led lighting on the antioxidant properties of microgreens. Acta Hortic 956:649–656

    Article  Google Scholar 

  • Samuolienė G, Sirtautas R, Brazaitytė A, Duchovskis P (2012b) LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem 134:1494–1499

    Article  PubMed  CAS  Google Scholar 

  • Samuolienė G, Sirtautas R, Brazaitytė A, Viršilė A, Duchovskis P (2012c) Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. J Food Agric Environ 10:701–706

    Google Scholar 

  • Samuolienė G, Brazaitytė A, Jankauskienė J, Viršilė A, Sirtautas R, Novičkovas A, Sakalauskienė S, Sakalauskaitė J, Duchovskis P (2013a) LED irradiance level affects growth and nutritional quality of Brassica microgreens. Cent Eur J Biol 8:1241–1249

    Google Scholar 

  • Samuolienė G, Brazaitytė A, Sirtautas R, Viršilė A, Sakalauskaitė J, Sakalauskienė S, Duchovskis P (2013b) LED illumination affects bioactive compounds in romaine baby leaf lettuce. J Sci Food Agric 93:3286–3291

    Article  PubMed  CAS  Google Scholar 

  • Samuolienė G, Brazaitytė A, Viršilė A, Jankauskienė J, Sakalauskienė S, Duchovskis P (2016) Red light-dose or wavelength-dependent photoresponse of antioxidants in herb microgreens. PLoS ONE. doi:10.1371/journal.pone.0163405

    PubMed  PubMed Central  Google Scholar 

  • Schneider C (2005) Chemistry and biology of vitamin E. Mol Nutr Food Res 49:7–30

    Article  CAS  PubMed  Google Scholar 

  • Seo JM, Arasu MV, Kim YB, Park SU, Kim SJ (2015) Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts. Food Chem 177:204–213

    Article  CAS  PubMed  Google Scholar 

  • Shalaby EA, Shanab SMM (2013) Antioxidant compounds, assays of determination and mode of action. Afr J Phar Pharmacol 7:528–539

    Article  CAS  Google Scholar 

  • Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205

    Article  CAS  Google Scholar 

  • Shen YZ, Guo SS, Ai WD, Tang YK (2014) Effects of illuminants and illumination time on lettuce growth, yield and nutritional quality in a controlled environment. Life Sci Space Res 2:38–42

    Article  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Plant Sci 19:267–290

    Article  CAS  Google Scholar 

  • Smirnoff N, Page M, Ishikawa T (2013) Ascorbate and photosynthesis: how does Arabidopsis adjust leaf ascorbate concentration to light intensity? BioTechnol 94:206–214

    Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 144:637–646

    Article  CAS  Google Scholar 

  • Son KH, Oh MM (2013) Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988–995

    Google Scholar 

  • Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107

    Article  CAS  PubMed  Google Scholar 

  • Stange C, Flores C (2012) Regulation of carotenoid biosynthesis by photoreceptors. In: Najafpour M (ed) Advances in photosynthesis fundamental aspects, In Tech Europe, University Campus, Croatia, pp 77–76

    Google Scholar 

  • Stutte GW, Edney S, Skerritt T (2009) Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44:79–82

    Google Scholar 

  • Tamulaitis G, Duchovskis P, Bliznikas Z, Breive K, Ulinksaite R, Brazaitytė A, Novičkovas A, Žukauskas A (2005) Highpower light-emitting diode based facility for plant cultivation. J Phys D Appl Phys 38:3182–3187

    Article  CAS  Google Scholar 

  • Tattini M, Gravano E, Pinelli P, Mullinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77

    Article  CAS  Google Scholar 

  • Tilbrook K, Arongaus AB, Binkert M, Heijde M, Yin R, Ulm R (2013) The UVR8 UV-B photoreceptor: perception, signaling and response. The Arabidopsis Book. Am Soc Plant Biol 11:e0164

    Google Scholar 

  • Tuan PA, Thwe AA, Kim YB, Kim JK, Kim SJ, Lee S, Chung SO, Park SU (2013) Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of Tartary buckwheat (Fagopyrum tataricum Gaertn.). J Agric Food Chem 61:12356–12361

    Article  CAS  PubMed  Google Scholar 

  • Urbonavičiūtė A, Pinho P, Samuolienė G, Duchovskis P, Vitta P, Stonkus A, Tamulaitis G, Žukauskas A, Halonen L (2007) Effect of short-wavelength light on lettuce growth and nutritional quality. Sodininkystė ir daržininkystė 26:57–165

    Google Scholar 

  • Urbonavičiūtė A, Samuolienė G, Brazaitytė A, Duchovskis P, Karklelienė R, Šliogerytė K, Žukauskas A (2009a) The effect of light quality on nutritional aspects of leafy radish. Sodininkystė ir daržininkystė 28:147–155

    Google Scholar 

  • Urbonavičiūtė A, Samuolienė G, Brazaitytė A, Duchovskis P, Ruzgas V, Žukauskas A (2009b) The effect of variety and lighting quality on wheatgrass antioxidant properties. Zemdirbyste 96:119–128

    Google Scholar 

  • Urbonavičiūtė A, Samuolienė G, Sakalauskienė S, Brazaitytė A, Jankauskienė J, Duchovskis P, Ruzgas V, Stonkus A, Vitta P, Žukauskas A, Tamulaitis G (2009c) Effect of flashing amber light on the nutritional quality of green sprouts. Agron Res 7:761–767

    Google Scholar 

  • Vaštakaitė V, Viršilė A, Brazaitytė A, Samuolienė G, Jankauskienė J, Sirtautas R, Duchovskis P (2015a) The effect of supplemental lighting on antioxidant properties of Ocimum basilicum L. microgreens in greenhouse. Rural Dev doi:10.15544/RD.2015.031

  • Vaštakaitė V, Viršilė A, Brazaitytė A, Samuolienė G, Jankauskienė J, Sirtautas R, Novičkovas A, Dabašinskas L, Sakalauskienė S, Miliauskienė J, Duchovskis P (2015b) The effect of blue light dosage on growth and antioxidant properties of microgreens. Sodininkystė ir daržininkystė 34:25–35

    Google Scholar 

  • Vauzour D, Vafeiadou K, Spencer JPE (2012) Polyphenols. In: Salter A, Wiseman H, Tucker G (eds) Phytonutrients. Wiley, UK, pp 110–145

    Chapter  Google Scholar 

  • Verkerke W, Labrie C, Dueck T (2015) The effect of light intensity and duration on vitamin C concentration in tomato fruits. Acta Hortic 1106:49–54

    Article  Google Scholar 

  • Viršilė A, Sirtautas R (2013) Light irradiance level for optimal growth and nutrient contents in borage microgreens. Rural Dev 6:272–275

    Google Scholar 

  • Voll LM, Abbasi A-R (2007) Are there specific in vivo roles for α- and γ-tocopherol in plants? Plant Signal Behav 2:486–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Folta KM (2013) Contributions of green light to plant growth and development. Am J Bot 100:70–78

    Article  CAS  PubMed  Google Scholar 

  • Wenke L, Qichang Y (2012) Effects of day-night supplemental UV-A on growth, photosynthetic pigments ant antioxidant system of pea seedlings in glasshouse. Afr J Biotechn 11:14786–14791

    Google Scholar 

  • Wojciechowska R, Długosz-Grochowska O, Kołton A, Żupnik M (2015) Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci Hortic 187:80–76

    Google Scholar 

  • Wu YS, Tang KX (2004) MAP kinase cascades responding to environmental stress in plants. Acta Bolon Sinica 46:127–136

    Google Scholar 

  • Wu MC, Hou CY, Jiang CM, Wang YT, Wang CY, Chen HH, Chang HM (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 1001:1753–1758

    Article  CAS  Google Scholar 

  • Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  CAS  PubMed  Google Scholar 

  • Yadav D, Rastogi A, Szymańska R, Kruk J, Sedlářová M, Pospíšil P (2013) Singlet oxygen scavenging by tocopherol and plastohromanol under photooxidative stress in Arabidopsis. Bio Technol 94:7

    Google Scholar 

  • Yeh N, Chung JP (2009) High-brightness LEDs efficient lighting sources and their potential in indoor plant cultivations. Renew Sustain Energy Rev 13:2175–2180

    Article  CAS  Google Scholar 

  • Zhang T, Maruhnich SA, Folta KM (2011) Green light induces shade avoidance symptoms. Plant Physiol Prev. doi:10.1104/pp.111.180661

    Google Scholar 

  • Zhang C, Zhang W, Ren G, Li D, Cahoon RE, Chen M, Zhou Y, Yu B, Cahoon EB (2015a) Chlorophyll synthase under epigenetic surveillance is critical for vitamin E synthesis, and altered expression affects tocopherol levels in Arabidopsis. Plant Physiol 168:1503–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ma G, Yamawaki K, Ikoma Y, Matsumoto H, Yoshioka T, Ohta S, Kato M (2015b) Effect of blue LED light intensity on carotenoid accumulation in citrus juice sacs. J Plant Physiol 188:58–63

    Article  CAS  PubMed  Google Scholar 

  • Žukauskas A, Bliznikas Z, Breivė K, Novičkovas A, Samuolienė G, Urbonavičiūtė A, Brazaitytė A, Jankauskienė J, Duchovskis P (2011) Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars. Acta Hortic 907:87–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giedrė Samuolienė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Samuolienė, G., Brazaitytė, A., Vaštakaitė, V. (2017). Light-Emitting Diodes (LEDs) for Improved Nutritional Quality. In: Dutta Gupta, S. (eds) Light Emitting Diodes for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_8

Download citation

Publish with us

Policies and ethics