Skip to main content

An Overview of LED Lighting and Spectral Quality on Plant Photosynthesis

  • Chapter
  • First Online:
Light Emitting Diodes for Agriculture

Abstract

Plants require light for photosynthesis and to control many hormonal and morphological changes in the cellular system, with specific colors of light resulting in improved photosynthesis. Changes in the wavelength spectrum have resulted variations in plant biomass production and morphology due to perturbations in the ratio of red/far-red spectrum and effect of blue light. The effects of red and blue light can be partially explained through the regulatory role of two plant photoreceptors, phytochromes and cryptochromes, respectively. However, the primary purpose of light is to drive the chemical reactions within the plant through photosynthesis which is determined by the absorbance characteristics of chlorophyll a and b, as well as the carotenoids, lutein and β-carotene. Higher intensities of wavelength of light exciting these pigments result in efficient photosynthesis, but specific absorbance peak does not always correlate with the maximum quantum yield of photosynthesis as well as plant production. This chapter describes the role of LEDs along with their spectral quality on photosynthesis, development of photosynthetic apparatus, and subsequent plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55(403):1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Barber J, Andersson B (1992) Too much good thing: light can be bad for photosynthesis. Trends Biochem Sci 17:61–66

    Article  CAS  PubMed  Google Scholar 

  • Benton JJ (eds) (2005) Hydroponics: a practical guide for the soilless grower. CRC Press, Florida

    Google Scholar 

  • Brown CS, Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J Am Soc Hort Sci 120:808–813

    CAS  Google Scholar 

  • Bula RJ, Morrow RC, Tibbits TW, Barta RW, Ignatius RW, Martin TS (1991) Light emitting diodes as a radiation source for plants. HortScience 26:203–205

    CAS  PubMed  Google Scholar 

  • Cambell NA, Reece JB, Mitchell LG (eds) (1999) Biology. Wesley Longman Inc., Menlo Park, California

    Google Scholar 

  • Cooper GM (ed) (2000) The cell: a molecular approach. Sinauer Associates, Sunderland Massachusetts, USA

    Google Scholar 

  • Cui J, Ma ZH, Xu ZG, Zgang H, Chang TT, Liu HJ (2009) Effects of supplemental lighting with different light qualities on growth and physiological characteristics of cucumber, pepper and tomato seedlings. Acta Hortic Sin 5:663–670

    Google Scholar 

  • Darko E, Heydarizdeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artificial light: the shift in primary and secondary metabolism. Phil Trans R Soc B 369:1–7

    Article  Google Scholar 

  • Demmig-Adams B, Gilmore AM, Adams WW III (1996) In vivo functions of carotenoids in higher plants. FASEB J10:403–412

    Google Scholar 

  • Falkowski PG, Raven RA (eds) (2007) Aquatic photosynthesis. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Farabee MJ (2007) On line biology book photosynthesis. Estrella Mountain Community College, Avondale, Arizona

    Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264

    Article  CAS  PubMed  Google Scholar 

  • Folta KM (2004) Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol 135:1407–1416

    Google Scholar 

  • Goins GD, Yorio NC, Sanwo MM, Brown CS (1997) Photomorphogenesis, photosynthesis and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot 48:1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Shuvalov VA (2005) Photochemical reactions of chlorophyll in dehydrated photosystem II: two chlorophyll forms (680 and 700 nm). Photosyn Res 84:85–91

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WG, Huner NPA (eds) (2004) Introduction to plant physiology. John Wiley and Sons, Hoboken, New Jersey

    Google Scholar 

  • Ieperen VW, Trouwborst G (2008) The application of LEDs as assimilation light source in greenhouse horticulture: a simulation study. Acta Hort 33:1407–141

    Google Scholar 

  • Johkan M, Shoji K, Goto F, Hahida S, Yoshihara T (2012) Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ Exp Bot 75:128–133

    Article  CAS  Google Scholar 

  • Kasap S (2001) PN junction devices and light emitting diodes. Special custom e-book. http://www.kasap.usask.ca/samples/PNJunctionDevices.pdf. Accessed 10 Sep 2016

  • Keefe TJ (2007) The nature of light. http://www.ccri.edu/physics/keefe/light.htm. Accessed 5 Nov 2016

  • Kim YH, Kim HG (2014) Chlorophyll fluorescence characteristics of cucumber grafted seedlings graft-taken under LED illumination with different light quality and light intensity. Ag Eng 2014: topics in animal husbandry, welfare, rural buildings and greenhouses. In: International conference of agricultural engineering, Zurich, July 2014. Lecture notes in animal husbandry, welfare, rural buildings and greenhouses, vol 304. Geystiona, pp 1–8

    Google Scholar 

  • Kopsell DA, Lefsrud M, Kopsell D (2009) Pre-harvest cultural growing conditions can influence carotenoid phytochemical concentrations in vegetable crops. Acta Hortic 841:283–294

    Article  CAS  Google Scholar 

  • Koning RE (1994) Light. Plant physiology information website. http://plantphys.info/plantphysiology/light.shtml

  • Koski VM, French CS, Smith JHC (1951) The action spectrum for the transformation of protochlorophyll to chlorophyll a in normal and albino corn seedlings. Arch Biochem Biophys 31:1–17

    Article  CAS  PubMed  Google Scholar 

  • Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the maclar pigment. Arch Biochem Biophys 385:8–40

    Article  Google Scholar 

  • Lefsrud MG, Kopsell DA, Sams CE (2008) Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in Kale. HortScience 43:2243–2244

    Google Scholar 

  • Li J, Hikosaka S, Goto E (2009) Effects of light quality and photosynthetic photon flux on growth and carotenoid pigments in spinach (Spinacia oleracea L.). Acta Hortic 907:105–110

    Google Scholar 

  • Li H, Tang C, Xu Z, Liu X, Han X (2012) Effects of different light sources on the growth of non-heading chinese cabbage (Brassica campestris L.). J Agr Sci 4:262–273

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Metallo RM, Kopsell DA, Sams CE, Morrow RC (2016) Management of LED light quality to maximize biomass and chlorophyll fluorescence in sprouting broccoli in controlled environments. In: ASHS 2016: topics in growth chambers and controlled environments 1. American Society for Horticultural Sciences annual conference, Atlanta, August 2016. Poster notes in growth chambers and controlled environments 1. HortScience, p 213

    Google Scholar 

  • Mishra S (2004) Photosynthesis in plants. Discovery Publishing House, New Delhi, India

    Google Scholar 

  • Mizuno T, Amaki W, Watanabe H (2011) Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in laves of cabbage seedlings. Acta Hortic 907:179–184

    Article  CAS  Google Scholar 

  • Morrow RC (2008) LED Lighting in horticulture. HortScience 43:1951–1956

    Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64(13):3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Nanya K, Ishigami Y, Hikosaka S, Goto E (2012) Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic 956:261–266

    Article  Google Scholar 

  • Naznin MT, Lefsrud M, Gravel V, Hao X (2016) Different ratios of red and blue LEDs light affect on coriander productivity and antioxidant properties. Acta Hortic 1134:223–229

    Article  Google Scholar 

  • Naznin MT, Lefsrud M, Gagne JD, Schwalb M, Bissonnette B (2012) Different wavelengths of LED light affect on plant photosynthesis. In: ASHS 2012: topics in crop physiology. American Society for Horticultural Sciences annual conference, Florida, August 2012. Lecture notes in crop physiology, vol 47(9). HortScience, p S191

    Google Scholar 

  • Novičkovas A, Brazaitytė A, Duchovskis P, Jankauskienė J, Samuolienė G, Viršilė A, Sirtautas R, Bliznikas Z, Žukauskas A (2012) Solid-statelamps (LEDs) for the short-wavelength supplementary lighting in greenhouses: experimental results with cucumber. Acta Hortic 927:723–730

    Article  Google Scholar 

  • Ogawa T, Inoue Y, Kitajima M, Shibata K (1973) Action spectra for biosynthesis of chlorophylls a and b and β-carotene. Photochem Photobiol 18:229–235

    Article  CAS  Google Scholar 

  • Ohashi-Kaneko K, Takase M, Kon N, Fujiwara K, Kurata K (2007) Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Control Biol 45:189–198

    Article  CAS  Google Scholar 

  • Opdam JG, Schoonderbeek GG, Heller EB, Gelder A (2005) Closed greenhouse: a starting point for sustainable entrepreneurship in horticulture. Acta Hortic 691:517–524

    Article  Google Scholar 

  • Ouzounis T, Fretté X, Ottosen CO, Rosenqvist E (2014) Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’. Physiol Plant 154(2):314–327

    Article  PubMed  Google Scholar 

  • Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12

    Article  CAS  PubMed  Google Scholar 

  • Schoefs B (2002) Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food Sci Technol. doi:10.1016/S0924-2244(02)00182-6

  • Schwalb M, Naznin MT, Lefsrud M (2014) Determination of the effect of red and blue ratios of LED light on plant photosynthesis.In: ASHS 2014: topics in growth chambers and controlled environments 2. American Society for Horticultural Sciences annual conference, Florida, July 2014. Lecture notes in growth chambers and controlled environments 2, vol 49(9). HortScience, p S241

    Google Scholar 

  • Steigerwald DA, Bhat JC, Collins D, Fletcher RM, Holcomb MO, Ludowise MJ, Martin PS, Rudaz SL (2002) Illumination with solid state lighting technology. IEEE J Sel Top Quant Electron 2(8):310–320

    Article  Google Scholar 

  • Stutte GW, Edney S, Skerritt T (2009) Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44:79–82

    Google Scholar 

  • Solymosi K, Schoefs B (2010) Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res 105(2):143–166

    Article  CAS  PubMed  Google Scholar 

  • Solymosi K, Keresztes A (2012) Plastid structure, diversification and interconversions II. Landplants. Curr Chem Biol 6(3):187–204

    Article  Google Scholar 

  • Taiz L, Zeiger E (eds) (1998) Plant physiology. Sinauer Associates Inc., Sunderland, Massachusetts, USA

    Google Scholar 

  • Thayer SS, Bjorkman O (1992) Carotenoid distribution and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynth Res 33:213–235

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Tian J, Yu B, Yang L, Sun Y (2015) LED light spectrum affects the photosynthetic performance of Houttuynia Cordata seedlings. Am J Opt Photonics 3(3):38–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Lefsrud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Naznin, M.T., Lefsrud, M. (2017). An Overview of LED Lighting and Spectral Quality on Plant Photosynthesis. In: Dutta Gupta, S. (eds) Light Emitting Diodes for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_6

Download citation

Publish with us

Policies and ethics