Skip to main content

LED Supplementary Lighting

  • Chapter
  • First Online:
Light Emitting Diodes for Agriculture

Abstract

Supplementary lighting is used to improve plant growth; to control plant morphogenesis, including flowering; to protect the plants from diseases; and to improve plant quality. LED technology has several merits for use in supplementary lighting systems, providing flexibility in controlling the light environment. To take full advantage of LED supplementary lighting, it is essential to adequately evaluate the efficiency of LED lighting. The direct evaluation of supplementary lighting involves estimating the benefit corresponding to the objectives of an endeavor. However, lighting efficiency can also be evaluated by interpreting the extent of light intensity that can be improved on leaf surfaces. Moreover, this analysis of light intensity distribution on canopy surfaces contributes to improve stability and reproducibility in both research and application of supplementary lighting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carvalho SD, Schwieterman ML, Abrahan CE, Colquhoun TA, Folta KM (2016) Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Front Plant Sci 7:1328

    PubMed  PubMed Central  Google Scholar 

  • Cope KR, Bugbee B (2013) Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortScience 48:504–509

    CAS  Google Scholar 

  • Deram P, Lefsrud MG, Orsat V (2014) Supplemental lighting orientation and red-to-blue ratio of light-emitting diodes for greenhouse tomato production. HortScience 49:448–452

    Google Scholar 

  • Ebisawa M, Shoji K, Kato M, Shimomura K, Goto F, Yoshihara T (2008) Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa L.). Environ Control Biol 46:1–11

    Article  CAS  Google Scholar 

  • Fukuda N, Nishimura S, Fumiki Y (2004) Effect supplemental lighting during the period from middle of night to morning on photosynthesis and leaf thickness of lettuce (Lactuca sativa L.) and tsukena (Brassica campestris L.). Acta Hortic 633:237–244

    Article  Google Scholar 

  • Hidaka K, Dan K, Imamura H, Miyoshi Y, Takayama T, Sameshima K, Kitano M, Okimura M (2013) Effect of supplemental lighting from different light sources on growth and yield of strawberry. Environ Control Biol 51:41–47

    Article  Google Scholar 

  • Higuchi Y, Sumitomo K, Oda A (2012) Daylight quality affects the night break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. J Plant Physiol 169:1789–1796

    Article  CAS  PubMed  Google Scholar 

  • Hisamatsu T (2012) Chapter 13. In: Goto E (ed) Agri-photonics II, the latest technology of plant factories with LED lighting. CMC, Tokyo, pp 114–124 (In Japanese)

    Google Scholar 

  • Ibaraki Y (2016) Lighting efficiency in plant production under artificial lighting and plant growth modeling for evaluating the lighting efficiency. In: Fujiwara K, Runkle ES (eds) Kozai T. LED lighting for urban agriculture, Springer, pp 151–161

    Google Scholar 

  • Ibaraki Y, Shigemoto C (2013) Estimation of supplemental lighting efficiency based on PPFD distribution on the canopy surface. J Agric Meteorol 69:47–54

    Article  Google Scholar 

  • Ibaraki Y, Kishida T, Shigemoto C (2012a) Image-based estimation of PPFD distribution on the canopy surface in a greenhouse. Acta Hortic 956:577–582

    Article  Google Scholar 

  • Ibaraki Y, Yano Y, OkuharaH Tazuru M (2012b) Estimation of light intensity distribution on a canopy surface from reflection images. Environ Control Biol 50:117–126

    Article  Google Scholar 

  • Imada K, Tanaka S, Ibaraki Y, Yoshimura K, Ito S (2014) Antifungal effect of 405-nm light on Botrytis cinerea. Lett Appl Microbiol 59:670–676

    Article  CAS  PubMed  Google Scholar 

  • Islam MA, Gislerød HR, Torre S, Olsen JE (2015) Control of shoot elongation and hormone physiology in poinsettia by light quality provided by light emitting diodes-a minireview. Acta Hortic 1104:131–136

    Article  Google Scholar 

  • Ito S, Yoshimura K, Ibaraki Y (2013) Chapter 14. In: Goto E (ed) Agri-Photonics II. The latest technology of plant factories with LED lighting, CMC, Tokyo, pp 125–132 (In Japanese)

    Google Scholar 

  • Kanto T, Matsuura K, Yamada M, Usami T, Amemiya Y (2009) UV-B radiation for control of strawberry powdery mildew. Acta Hortric 842:68

    Google Scholar 

  • Kobayashi M, Kanto T, Fujikawa T (2013) Supplemental UV radiation controls rose powdery mildew disease under the greenhouse conditions. Environ Control Biol 51:157–163

    Article  CAS  Google Scholar 

  • Kudo R, Ishida Y, Yamamoto K (2011) Effects of green light irradiation on induction of disease resistance in plants. Acta Hortic 907:251–254

    Article  Google Scholar 

  • Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64

    Article  CAS  Google Scholar 

  • Li X, Lu W, Hu G, Wang XC, Zhang Y, Sun GX, Fang Z (2016) Effects of light-emitting diode supplementary lighting on the winter growth of greenhouse plants in the yangtze river delta of China. Bot Stud 57. doi:10.1186/s40529-015-0117-3

  • Liao Y, Suzuki K, Yu W, Zhuang D, Takai Y, Ogasawara R, Shimazu T, Fukui H (2014) Night break effect of LED light with different wavelengths on floral bud differentiation of Chrysanthemum morifolium Ramat ‘Jimba’ and ‘Iwa no hakusen’. Environ Control Biol 52:45–50

    Article  Google Scholar 

  • Miyoshi T, Ibaraki Y, Sago Y (2016) Development of an android-tablet-based system for analyzing light intensity distribution on a plant canopy surface. Comput Electron Agric 122:211–217

    Article  Google Scholar 

  • Ochiai M, Liao Y, Shimazu T, Takai Y, Suzuki K, Yano S, Fukui H (2015) Varietal differences in flowering and plant growth under night-break treatment with LEDs in 12 Chrysanthemum cultivars. Environ Control Biol 53:17–22

    Article  Google Scholar 

  • Ouzounis T, Frette X, Rosenqvist E, Ottosen CO (2014) Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. J Plant Physiol 171:1491–1499

    Article  CAS  PubMed  Google Scholar 

  • SamuolienÄ— G, Sirtautas R, BrazaitytÄ— A, VirÅ¡ilÄ— A, Duchovskis P (2012) Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. J Food Agric Environ 10:701–706

    Google Scholar 

  • Shetty R, Fretté X, Jensen B, Shetty NP, Jensen JD, Jørgensen HJ, Newman MA, Christensen LP (2011) Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiol 157:2194–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiga T, Shojil K, Shimada H, Hashida S, Goto F, Yoshihara T (2009) Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L. Plant Biotechnol 26:255–259

    Google Scholar 

  • Suthaparan A, Torre A (2010) Specific light-emitting diodes can suppress sporulation of Podosphaera pannosa on greenhouse roses. Plant Dis 94:1105–1110

    Article  Google Scholar 

  • Tewolde FT, Lu N, Shiina K, Maruo T, Takagaki M, Kozai T, Yamori W (2016) Night time supplemental LED inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer. Front Plant Sci 7:448. doi:10.3389/fpls.2016.00448.e-Collection

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokuno A, Ibaraki Y, Ito S, Araki H, Yoshimura K, Osaki K (2012) Disease suppression in greenhouse tomato by supplementary lighting with 405 nm LED. Environ Control Biol 50:19–29

    Article  Google Scholar 

  • Trouwborst G, Oosterkamp J, Hogewoning SW, Harbinson J, Ieperen WV (2010) The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol Plant 138:289–300

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Jiang YP, Jing H (2010) Light quality affects incidence of powdery mildew, expression of defense-related genes and associated metabolism in cucumber plants. Eur J Plant Pathol 127:125–135

    Article  CAS  Google Scholar 

  • Wojciechowska R, DÅ‚ugosz-Grochowska O, KoÅ‚ton A, Å»upnik M (2015) Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. SciHortic 187:80–86

    Google Scholar 

  • Yang ZC, Kubota C, Chia PL, Kacirac M (2012) Effect of end-of-day far-red light from a movable LED fixture on squash rootstock hypocotyl elongation. Sci Hortic 136:81–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuomi Ibaraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ibaraki, Y. (2017). LED Supplementary Lighting. In: Dutta Gupta, S. (eds) Light Emitting Diodes for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_2

Download citation

Publish with us

Policies and ethics