Skip to main content

Impact of Light-Emitting Diodes (LEDs) on Propagation of Orchids in Tissue Culture

  • Chapter
  • First Online:
Light Emitting Diodes for Agriculture

Abstract

LED technology is increasingly used in organ and tissue cultures of ornamental plants due to its ability to adjust the spectral light composition to the physiological and morphological requirements of plants. This chapter presents an overview of studies that have been conducted to investigate the effects of light-emitting diodes (LEDs) on the propagation of different orchids under in vitro condition. Most of the available reports are related to the use of mixed red and blue LEDs. In general, monochromatic red light enhances vegetative growth, whereas blue light usually increases chlorophyll content in the regenerated plantlets. There are some particular species in which beneficial effects of green LED light have been ascertained on the induction of protocorm-like bodies (PLBs). The application of far-red in combination with red light can be effective in the improvement of the quality of micropropagated plantlets. However, the results vary depending on tested spectral composition of light, species, or even cultivar as well as applied environmental conditions. This review also addresses future challenges in the adoption of LED technology for improving the growth and development of plantlets cultivated under ex vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali M, Hahn EJ, Peak HY (2005) Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalenopsis plantlet. Environ Exp Bot 54:109–120

    Article  CAS  Google Scholar 

  • Arditti J (2008) Micropropagation of orchids. Blackwell Publ, USA. ISBN-13:978-1-4058–6088-9

    Google Scholar 

  • Bae KH, Oh KH, Kim SY (2014) Sodium hypochlorite treatment and light-emitting diode (LED) irradiation effect on in vitro germination of Oreorchis patens (Lindl.) Lindl. J Plant Biotech 41:44–49

    Article  Google Scholar 

  • Ballantyne M, Pickering CM (2015) The impacts of trail infrastructure on vegetation and soils: current literature and future directions. J Environ Man 164:53–64

    Article  Google Scholar 

  • Baque AM, Shin YK, Elshmari T, Lee EJ, Paek KY (2011) Effect of light quality, sucrose and coconut water concentration on the microporpagation of Calanthe hybrids (‘Bukduseong’ × ‘Hyesung’ and ‘Chunkwang’ × ‘Hyesung’). Aust J Crop Sci 5(10):1247–1254

    CAS  Google Scholar 

  • Bateman RM (2011) Two steps forward, one step back: deciphering British and irish marsch-orchids. Watsonia 14:347–376

    Google Scholar 

  • Batschauer A (1999) Light perception in higher plants. Cell Mol Life Sci 55(2):153–166

    Google Scholar 

  • Battacharyya P, Kumaria S, Job N, Tandon P (2015) Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of Dendrobium thyrsiflorum: a threatened, medicinal orchid. Plant Cell Tissue Organ Cult 122:535–550

    Article  Google Scholar 

  • Begum AA, Tamaki M, Kako S (1994) Formation of protocorm-like bodies (PLBs) and shoot development through in vitro culture of outer tissue of Cymbidium PLB. J. Jpn Hortic Sci 63(3):663–637

    Google Scholar 

  • Bhadra SK, Hossain MM (2003) In vitro germination and micropropagation of Geodorum densiflorum (Lam.) Schltr., an endangered orchid species. Plant Tissue Cult 13(2):165–171

    Google Scholar 

  • Bhattacharyya P, Van Staden J (2016) Ansellia africana (Leopard orchid): a medicinal orchid species with untapped reserves of important biomolecules—a mini review. S Afr J Bot 106:181–185

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Kumaria S, Tandon P (2016) High frequency regeneration protocol for Dendrobium nobile: a model tissue culture approach for propagation of medicinally important orchid species. S Afr J Bot 104:232–243

    Article  CAS  Google Scholar 

  • Chen Y, Goodale UM, Fan XL, Gao JY (2015) Asymbiotic seed germination and in vitro seedling development of Paphiopedilum spicerianum: an orchid with an extremely small population in China. Global Ecol Conserv 3:367–378

    Article  Google Scholar 

  • Chia TF, Hew CS, Loh CS, Lee YK (1998) Carbon/nitrogen ratio and greening and protocorm formation in orchid callus tissue. HortScience 13:599–601

    Google Scholar 

  • Chugh S, Satyakam G, Rao IU (2009) Micropropagation of orchids: a review on the potential of different explants. Sci Hortic 122:507–520

    Article  CAS  Google Scholar 

  • Chung JP, Huang CY, Dai TE (2010) Spectral effects on embryogenesis and plantlet growth of Oncidium ‘Gower Ramsey’. Sci Hortic 124:511–516

    Article  CAS  Google Scholar 

  • Cybularz-Urban T, Hanus-Fajerska E (2008) The morphogenetic capability and the viability of regenerants in micropropagated orchid hybrids infected with viral pathogens. Folia Hortic 20(2):93–102

    Article  Google Scholar 

  • Cybularz-Urban T, Hanus-Fajerska E, Swiderski A (2007a) Effect of wavelength on in vitro organogenesis of Cattleya hybrid. Act Biol Cracoc, Series Bot 49(1):113–118

    Google Scholar 

  • Cybularz-Urban T, Hanus-Fajerska E, Swiderski A (2007b) Preliminary morphological, anatomical and biochemical characteristic of micropropagated Cattleya under UV-A and white light illumination. Zesz Probl Post Nauk Roln 523:59–67

    Google Scholar 

  • Cybularz-Urban T, Hanus-Fajerska E, Bach A (2015) Callus induction and organogenesis in vitro of Cattleya protocorm-like bodies (PLBs) under different light conditions. Act Sci Pol, Seria Hort Cult Hortic 14(6):19–28

    Google Scholar 

  • da Silva JAT (2014) The response of protocorm-like bodies of nine hybrid Cymbidium cultivars to light-emitting diodes. Environ Exp Biol 12:155–159

    Google Scholar 

  • da Silva JAT, Zeng S, Cardoso J, Dobránszki J, Kerbauy GB (2014) In vitro flowering of Dendrobium. Plant Cell Tissue Organ Cult 119:447–456

    Article  Google Scholar 

  • de la Rosa-Manzano E, Andarade JL, Zotz G, Reyes-García C (2014) Epiphytic orchids in tropical dry forests in Yucatan, Mexico–species occurrence, abundance and correlations with host tree characteristics and environmental conditions. Flora 209:100–019

    Google Scholar 

  • de la Rosa-Manzano E, Andarade JL, García-Mendosa E, Zotz G, Reyes-García C (2015) Photoprotection related to xantophyll cycle pigments in epiphytic orchids acclimated at different microevironments in two tropical dry forests of the Yucatan Penisula, Mexico. Planta 242:1425–1438

    Article  PubMed  Google Scholar 

  • Devlin PF, Christie JM, Terry MJ (2007) Many hands make light work. J Exp Bot 58(12):3071–3077

    Article  CAS  PubMed  Google Scholar 

  • Dewi K, Purwestri YA, Astuti YTM, Natasaputra L, Parmi (2014) Effects of light quality on vegetative growth and flower initiation in Phalaenopsis. Indonesian J Biotech 19(1):33–42

    Google Scholar 

  • Dutta Gupta S, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotech Rep 7:211–220

    Article  Google Scholar 

  • Ercole E, Rodda M, Molinatti M, Voyron S, Perotto S, Girlanda M (2013) Cryopreservation of orchid mycorrhizal fungi: a tool for conservation of endangered species. J Micr Meth 93:134–137

    Article  Google Scholar 

  • Fay MF (2015) British and Irish orchids in a changing world. Curtis’s Bot Mag 2(1):3–23

    Article  Google Scholar 

  • Folta KM, Maruhnich SA (2007) Green light: a signal to slow down or stop. J Exp Bot 58:3099–3111

    Article  CAS  PubMed  Google Scholar 

  • Fracchia S, Aranda-Rickert A, Flachsland E, Terada G, Sede S (2014) Mycorrhizal compatibility and symbiotic reproduction of Gaviela australis, an endangered terrestial orchid from south Patagonia. Mycorrhiza 24:627–634

    Article  PubMed  Google Scholar 

  • Freudenstein JV, Chase MW (2015) Phylogenetic relationships in Epidendroideae (Orchideaceae), one of the great flowering plant radiations: progressive specialization and diversification. Ann Bot 115:665–681

    Article  PubMed  PubMed Central  Google Scholar 

  • Godo T, Fujiwara K, Guan K, Miyoshi K (2011) Effects of wavelength of LED-light on in vitro asymbiotic germination and seedling growth of Bletilla ochracea Schltr. (Orchidaceae). Plant Biotech 28:397–400

    Article  Google Scholar 

  • Gogoi K (2005) The genus Dendrobium in Dibru-Saikhowa National Park and Biosphere Reserve. J Orchid Soc India 19(1/2):17–25

    Google Scholar 

  • Gogoi K, Borah RL, Shrama GC (2010) Orchid flora of Dibru-Saikhowa National Park and Biosphere Reserve, Assam India. Pleione 4(1):124–134

    Google Scholar 

  • Habiba SU, Shimasaki K, Ahasan MM, Alam MM (2014a) Effect of 6-benzylaminopurine (BA) and hyaluronic acid (HA) under white light emitting diode (LED) on organogenesis in protocorm-likebodies (PLBs) of Dendrobium kingianum. American-Eurasian J Agric Environ Sci 14(7):605–609

    Google Scholar 

  • Habiba SU, Shimasaki K, Ahasan MM, Alam MM (2014b) Effects of different light quality on growth and development of protocorm-like bodies (PLBs) in Dendrobium kingianum cultured in vitro. Bangladesh Res Public J 10(2):223–227

    Google Scholar 

  • Hossain MM, Rahi P, Gulati A, Shrama M (2013) Improved ex vitro survival of asymbiotically raised seedlings of Cymbidium using mycorrhizal fungi isolated from distant orchid taxa. Sci Hortic 159:109–112

    Article  Google Scholar 

  • Hsu HC, Chen C (2010) The effect of light spectrum on the growth characteristics of in vitro cultures of Phalaenopsis. Prop Ornam Plants 10(1):3–8

    Google Scholar 

  • Jakubowska-Gabara J, Kurzac M, Kiedrzyński M, Kopeć D, Kucharski L, Kołodziejek J, Niedźwiedzki P, Popkiewicz P, Witosławski P, Zielińska K (2012) New stations of rare, protected and threatened species of vascular plants in Central Poland. Part II Fragm Florist Geobot 19(2):349–359

    Google Scholar 

  • Kaewjampa N, Shimasaki K (2012) Effects of green LED lighting on organogenesis and superoxide dismutase (SOD) activities in protocorm-like bodies (PLBs) of Cymbidium cultured in vitro. Environ Control Biol 50(3):247–254

    Article  CAS  Google Scholar 

  • Khamchatra N, Dixon KW, Taniwiwat S, Piapukiew J (2016) Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedillum villosum (Lindl.) Stein. from Thailand. S Afr J Bot 104:76–81

    Article  Google Scholar 

  • Kim SJ, Hahn EJ, Heo JW, Paek KY (2004) Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci Hortic 101:143–151

    Article  Google Scholar 

  • Knudson L (1946) A new nutrient medium for germination of orchid seeds. Am Orchid Soc Bull 39:214–217

    Google Scholar 

  • Křenová Z, Kidlmann P (2015) Natura 2000—solution for Eastern Europe or just a good start? The Šumava National Park as a test case. Biol Conserv 186:287–275

    Google Scholar 

  • Kull T, Selgis U, Peciῆa MV, Metsare M, Ilves A, Tali K, Sepp K, Kull K, Shefferson RP (2016) Factors influencing threat levels to orchids across Europe on the basis of national red lists. Ecol Evol 6(17):6245–6265

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurilčik A, Dapkūniene S, Kurličik G, Žilinskaite S, Žukauskas A, Duchovskis P (2008) Effect of photoperiod duration on the growth of Chrysanthemum plantlets in vitro. Sci Works Lith Inst Hort Lith Univ Agric Sodininkyste Ir Darzyninkyste 27(2):39–43

    Google Scholar 

  • Lemay MA, De Vriendt L, Pellerin S, Poulin M (2015) Ex situ germination as a method for seed viability assessment in a peatland orchid Palanthera blephariglottis. Am J Bot 102(3):390–395

    Article  PubMed  Google Scholar 

  • Li H, Tang C, Xu Z (2013) The effects of different qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Sci Hortic 150:117–124

    Article  Google Scholar 

  • Lin Y, Li J, Li B, He T, Chun Z (2011) Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tissue Organ Cult 105:329–335

    Article  Google Scholar 

  • Luan YQ, Huy NP, Nam NB, Huong TT, Hien FT, Hien NTT, Hai NT, Thinh DK, Nhut DT (2015) Ex vitro and in vitro Paphiopedilum delenatii Guillaumin stem elongation under light-emitting diodes and shoot regeneration via stem node culture. Acta Physiol Plant 37. doi:10.1007/s11738-015-1886-8

  • Martin KP, Madsssery J (2006) Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants, and protocorm-like bodies. Sci Hortic 108:95–99

    Article  CAS  Google Scholar 

  • Mengxi L, Zhigang X, Yang Y, Yijie F (2011) Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tiss Organ Cult 106:1–10

    Article  Google Scholar 

  • Mohanthy P, Paul S, Das MC, Kumaria S, Tandon P (2012) A simple and efficient protocol for the mass propagation of Cymbidium maestrii: an ornamental orchid of Northeast India. AoB Plants pls023. doi:10.1093/aobpl/pls023

  • Morrow RC (2008) LED lighting in horticulture. HortScience 43(7):1947–1950

    Google Scholar 

  • Müller R, Nowicki C, Barthlott W, Ibish PL (2003) Biodiversity and endemism maping as a tool for regional conservation planning—case study of the Pleurothallidinae (Orchidaceae) of the Andean rain forests in Bolivia. Biodiv Conserv 12:2005–20024

    Article  Google Scholar 

  • Nahar SJ, Haque SM, Kazuhiko S (2016) Application of chondroitin sulfate on organogenesis of two Cymbidium spp. under different sources of lights. Not Sci Biol 8(2):156–160

    Google Scholar 

  • Naing AH, Chung JD, Park IS, Lim KB (2011) Efficient plant regeneration of the endangered medicinal orchid, Colelogyne cristata using protocorm-like bodies. Acta Physiol Plant 33:659–666

    Article  Google Scholar 

  • Nayak NR, Rath SP, Patnaik S (1997) In vitro propagation of three epiphytic orchids, Cymbidium aloifolium (L.) Sw., Dendrobium aphyllum (Roxb.) Fisch. and Dendrobium moschatum (Buch-Ham) Sw. through thidiazuron-induced high frequency shoot proliferation. Sci Hortic 71:243–250

    Article  Google Scholar 

  • Nayak NR, Chand PK, Rath SP, Patnaik SN (1998) Influence of some plant growth regulators on the growth and organogenesis of Cymbidium aloifolium (L.) Sw. seed-derived rhizomes in vitro. In Vitro Cell Dev Biol Plant 34:185–188

    Article  CAS  Google Scholar 

  • Nayak NR, Sahoo S, Patnaik S, Rath SP (2002) Establisment of thin cross section culture (TCS) culture method for rapid micropropagation of Cymbidium aloifolium (L.) Sw and Dendrobium nobile Lind. (Orchidaceae). Sci Hortic 94:107–116

    Article  CAS  Google Scholar 

  • Ng ChY, Saleh NM (2011) In vitro propagation of Paphiopedilum orchid through formation of protocorm-like bodies. Plant Cell Tissue Organ Cult 105:193–202

    Article  Google Scholar 

  • Nordström S, Hedrén M (2009) Evolution, phylogeography and taxonomy of allopolyploid Dactylorhiza (Orchidaceae) and its implications for conservation. Nordic J Bot 27:458–556

    Google Scholar 

  • Ouzounis T, Rosenqvist E, Ottosen CO (2015) Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience 50(8):1128–1135

    CAS  Google Scholar 

  • Palomo I, Martīn-Lόpez B, Potschin M, Hainez-Young H, Montes C (2013) National parks, buffer zones and surrounding lands: mapping ecosystem service flows. Ecosyst Serv 4:104–116

    Article  Google Scholar 

  • Pan X, Zhou H, Li X, Wang W, Huang H (2015) LED mixed lighting for tissue culture of orchids. United States Patent No.: US 8,944,631 B2, 3 Feb 2015

    Google Scholar 

  • Panwar D, Ram K, Shekhwat NS (2012) In vitro propagation of Eulophia nuda Lindl., an endangered orchid. Sci Hortic 139:46–52

    Article  CAS  Google Scholar 

  • Park SY, Yeung EC, Paek KY (2010) Endoreduplication in Phalaenopsis is affected by light quality from light-emitting diodes during somatic embryogenesis. Plant Biotech Rep 4:303–309

    Article  CAS  Google Scholar 

  • Pindel A, Pindel Z (2004) Initiation of in vitro cultures of chosen endangered species of orchids. Folia Hortic 16(2):111–117

    Google Scholar 

  • Prahdan S, Tiwura B, Subedee BR, Pant B (2014) In vitro germination and propagation of a threatened medicinal orchid, Cymbidium aloifolium (L.) Sw. through artificial seed. Asian Pac J Trop Biomed 4(12):971–976

    Google Scholar 

  • Ramah S, Mubbarakh SA, Sinniah UR, Subramaniam S (2015a) Effect of droplet-vitrification on Brassidium Shooting Star’s orchid protocorm-like bodies (PLBs). Sci Hortic 197:254–260

    Article  Google Scholar 

  • Ramah S, Mubbarakh SA, Ping KS, Subramaniam S (2015b) Effects of dropled-vitrification cryopreservation based on physiological and antioxidant enzyme activities of Brassidium shooting star orchid. Sci World J. doi:10.1155/2015/961793

  • Rewicz A, Zielińska K, Kiedrzyński M, Kucharski L (2015) Orchidaceae in the antropogenic landscape of central Poland: diversity, extinction and conservation perspectives. Arch Biol Sci 67(1):119–130

    Article  Google Scholar 

  • Rudall PJ, Perl CD, Bateman RM (2012) Organ homologies in orchid flowers re-interpreted using the Musk Orchid as a model. PeerJ 1:e26. doi:10.7717/peerj.26

  • Saiprasad GVS, Raghuveer P, Khetarpal S, Chandra R (2004) Effect of various polyamines on production of protocorm-like bodies in orchid—Dendrobium ‘Sonia’. Sci Hort 100:161–168

    Article  CAS  Google Scholar 

  • Sathiyadash K, Muthukumar T, Murgan SB, Sathishkumar R, Pandey RR (2014) In vitro symbiotic seed germination of South Indian endemic orchid Coelogyne nervosa. Mycoscience 55:183–189

    Article  Google Scholar 

  • Seaton PT, Pritchard HW, Marks TR (2015) Aspects of orchid conservation: seed and polen storage and their value in re-introduction projects. Univ J Plant Sci 3(4):72–76

    Article  Google Scholar 

  • Seeni S, Latha PG (1992) Foliar regeneration of the endangered Red Vanda, Renanthera imschootiana Rolfe (Orchidaceae). Plant Cell Tissue Organ Cult 29:167–172

    Article  CAS  Google Scholar 

  • Sheshukova L, Klimenko E, Miryugina T, Olshetyn A, Vychuzhanina A (2014) Ecotourism in Western Siberia: issues and topical solutions. Middle-East J Sci Res 19(1):105–109

    Google Scholar 

  • Shimasaki K, Uemoto S (1990) Micropropagation of terrestial Cymbidium species using rhizomes developed from seeds and pseudobulbs. Plant Cell Tissue Organ Cult 22:237–244

    Article  CAS  Google Scholar 

  • Shin KS, Murthy HN, Heo JW, Hahn EJ, Paek KY (2008) The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant 30:339–343

    Article  CAS  Google Scholar 

  • Singh D, Basu C, Meinhardt-Wollweber M, Roth B (2015) LEDs for energy efficient greenhouse lighting. Renew Sustain Energ Rev 49:139–147

    Article  CAS  Google Scholar 

  • Steward J, Griffiths M (1995) Manual of orchids. Timber Press, New York

    Google Scholar 

  • Swangmaneecharern P, Serivichyaswat P, Nontachaiyapoom S (2012) Promoting effect of orchid mycorrhizal fungi Epulorhiza isolates on seed germination of Dendrobium orchids. Sci Hortic 148:55–58

    Article  Google Scholar 

  • Swiderski A, Cybularz-Urban T, Hanus-Fajerska E (2007) The influence of UV radiation on the level of phenolic compounds in Cattleya leaves. Acta Physiol Plant 29(1 suppl.):115

    Google Scholar 

  • Tanaka M, Takamura T, Watanabe H, Endo M, Yanagi T, Okamoto K (1998) In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). J Hortic Sci Biotech 73:39–44

    Article  Google Scholar 

  • Tokuhara K, Mii M (1993) Micropropagation of Phalenopsis and Doritaneopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep 13:7–11

    Article  CAS  PubMed  Google Scholar 

  • Tsai CC, Peng CI, Huang SC, Pl Huang, Chou Ch (2004) Determination of genetic relationship of Dendrobium species (Orchidaceae) in Taiwan based on the sequence of the internal transcribed spacer of ribosomal DNA. Sci Hortic 101:315–325

    Article  CAS  Google Scholar 

  • Vidal OJ, san Martin C, Mardones S, Bauk V, Vidal CF (2012) The orchids of Torres del Paine biosphere reserve: the need for species monitoring and ecotourism planning for biodiversity conservation. Gayana Bot 69(1):136–146

    Google Scholar 

  • Whigham DF, O’Neil JP, Rasmussen HN, Caldwell BA, McCormick MK (2006) Seed longevity in terrestial orchids—potential for persistent in situ seed banks. Biol Conserv 129:24–30

    Article  Google Scholar 

  • Wojciechowska R, Długosz-Grochowska O, Kołton A, Żupnik M (2015) The effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce in two winter cycles. Sci Hortic 187:80–86

    Article  Google Scholar 

  • Wongnok A, Piluek C, Techasilpitak T, Tantivivat S (2008) Effects of light emitting diodes on micropropagation of Phalaenopsis orchids. Acta Hortic 788:149–156

    Article  Google Scholar 

  • Wu K, Zeng S, Lin D, da Silva JAT, Bu Z, Zhang J, Duan J (2014) In vitro propagation and reintroduction of the endangered Renanthera imschootiana Rolfe. PLoS One 9(10):e110033. doi:10.1371/journal.pone0110033

    Article  PubMed  PubMed Central  Google Scholar 

  • Yano A, Fujiwara K (2012) Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control. Plant Meth 8:46

    Article  CAS  Google Scholar 

  • Zang Z, Yan Y, Li J, He JS, Tang Z (2015) Distribution and conservation of orchid species richness in China. Biol Conserv 181:64–72

    Article  Google Scholar 

  • Zettler LW, Hofer CJ (1998) Propagation of the little club-spur orchid (Palanthera clavellata) by symbiotic seed germination and its ecological implications. Environ Exp Bot 39:189–195

    Article  Google Scholar 

  • Zhao P, Wu F, Feng FS, Wang WJ (2008) Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrombium candidum Wall ex Lindl. In Vitro Cell Dev Biol Plant 44:178185

    Google Scholar 

  • Zhao D, Hu G, Chen Z, Shi Y, Zheng L, Tang A, Long C (2013) Micropropagation and in vitro flowering of Dendrobuim wangliangii: a critically endangered medicinal orchid. J Med Plant Res 7(28):2098–2110

    Article  CAS  Google Scholar 

  • Zotz G (2013) The systematic distribution of vascular epiphytes—a critical update. Bot J Linn Soc 171:453–481

    Article  Google Scholar 

  • Zotz G, Winkler U (2013) Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171:733–741

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hanus-Fajerska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hanus-Fajerska, E., Wojciechowska, R. (2017). Impact of Light-Emitting Diodes (LEDs) on Propagation of Orchids in Tissue Culture . In: Dutta Gupta, S. (eds) Light Emitting Diodes for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_13

Download citation

Publish with us

Policies and ethics