Skip to main content

Diabetics and Stroke

  • Chapter
  • First Online:

Part of the book series: Translational Medicine Research ((TRAMERE))

Abstract

Diabetes mellitus is one of the largest global health emergencies threating public health worldwide. Chronic elevation of blood glucose level can lead to injury of blood vessels resulting in chronic diabetic complication, that is, diabetic vasculopathy. With respect to this vascular dysfunction in brain vasculature, diabetes mellitus confers an increased risk of ischemic stroke. Strokes in patients with diabetes are usually associated with a worse outcome. The cerebrovascular protection is not only limited to prevention of diabetes but also diabetes-induced detrimental changes in vascular structure and function before the occurrence of stroke. Effective and acute prevention of vascular dysfunction and blood–brain barrier disruption following acute ischemic stroke is important in diabetic stroke treatment.

This is a preview of subscription content, log in via an institution.

Abbreviations

ACCORD:

Action to Control Cardiovascular Risk in Diabetes

ADA:

American Diabetes Association

ADEPS:

Amrita Diabetes and Endocrine Population Survey

AGEs:

Advanced glycation end-products

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

BMSCs:

Bone marrow stromal cells

BOLD:

Blood-oxygen-level dependent

BP:

Blood pressure

CRP:

C-reactive protein

CURES:

Chennai Urban Rural Epidemiology Study

CVD:

Cardiovascular disease

DM:

Diabetes mellitus

DTI:

Diffusion tensor imaging

ECs:

Endothelial cells

eNOS:

Endothelial nitric oxide synthase

ENSANUT 2012:

2012 National Health and Nutrition Survey

EPC:

Endothelial progenitor cell

fMRI:

Functional MRI

GDM:

Gestational DM

GIST-UK:

Glucose–potassium–insulin infusion in the management of poststroke hyperglycemia in UK

GK:

Goto-Kakizaki

GRASP:

Glucose regulation in acute stroke patients

HbA1c:

Glycated hemoglobin A1c

HT:

Hemorrhagic transformation

HUCBCs:

Human umbilical cord blood cells

IADPSG:

International Association of Diabetes in Pregnancy Study Groups

ICAM-1:

Intercellular adhesion molecule-1

ICH:

Intracerebral hemorrhage

IDF:

International diabetes federation

IFG:

Impaired fasting glucose

IGT:

Impaired glucose tolerance

IL-6:

Interleukin-6

IUGR:

Intrauterine growth retardation

LDL:

Low-density lipoprotein

MCAO:

Middle cerebral artery occlusion

miRs:

Micro-ribonucleic acids

MMPs:

Matrix metalloproteinases

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

NIDD:

Non-insulin-dependent diabetes

NINDS:

National Institute of Neurological Disorders and Stroke

NO:

Nitric oxide

ODP:

Overt diabetes in pregnancy

OGTT:

Oral glucose tolerance testing

OLETF:

Otsuka Long-Evans Tokushima Fatty

OPCs:

Oligodendrocyte progenitor cells

PAI-1:

Plasminogen activator inhibitor-1

PCA:

Post cerebral artery

PC-MRA:

Phase-contrast magnetic resonance angiography

PET:

Positron emission tomography

PKC:

Protein kinase C

RAGE:

Receptor for advanced glycation end-products

ROS:

Reactive oxygen species

SCI:

Subcortical infarctions

SDT:

Spontaneously diabetic Tori

SMC:

Smooth muscle cell

SSS:

Scandinavian stroke scale

STZ:

Streptozotocin

SWI:

Susceptibility-weighted imaging

T1DM:

Type 1 DM

T2DM:

Type 2 DM

TCD:

Transcranial Doppler

THIS:

Treatment of hyperglycemia in ischemic stroke

TM:

Thrombomodulin

TNF-α:

Tumor necrosis factor-α

t-PA:

Tissue-type plasminogen activator

VCAM-1:

Vascular cell adhesion molecule 1

VEGF:

Vascular endothelial growth factor

vWF:

von Willebrand factor

ZDF:

Zucker diabetic fatty

References

  1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  2. Mohan V, Deepa M, Deepa R, Shanthirani CS, Farooq S, Ganesan A, et al. Secular trends in the prevalence of diabetes and impaired glucose tolerance in urban South India – the Chennai Urban Rural Epidemiology Study (CURES-17). Diabetologia. 2006;49(6):1175–8.

    Article  CAS  PubMed  Google Scholar 

  3. Menon VU, Kumar KV, Gilchrist A, Sugathan TN, Sundaram KR, Nair V, et al. Prevalence of known and undetected diabetes and associated risk factors in central Kerala – ADEPS. Diabetes Res Clin Pract. 2006;74(3):289–94.

    Article  PubMed  Google Scholar 

  4. Soltesz G, Patterson CC, Dahlquist G. Worldwide childhood type 1 diabetes incidence – what can we learn from epidemiology? Pediatr Diabetes. 2007;8(Suppl 6):6–14.

    Article  PubMed  Google Scholar 

  5. Proceedings of the 4th International Workshop-Conference on Gestational Diabetes Mellitus. Chicago, Illinois, USA. 14–16 March 1997. Diabetes care. 1998;21 Suppl 2:B1–167.

    Google Scholar 

  6. Spaight C, Gross J, Horsch A, Puder JJ. Gestational diabetes mellitus. Endocr Dev. 2016;31:163–78.

    Article  PubMed  Google Scholar 

  7. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet (London, England). 2009;373(9677):1773–9.

    Article  CAS  Google Scholar 

  8. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25(10):1862–8.

    Article  PubMed  Google Scholar 

  9. Lee AJ, Hiscock RJ, Wein P, Walker SP, Permezel M. Gestational diabetes mellitus: clinical predictors and long-term risk of developing type 2 diabetes: a retrospective cohort study using survival analysis. Diabetes Care. 2007;30(4):878–83.

    Article  CAS  PubMed  Google Scholar 

  10. Control CfD, Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: US Department of Health and Human Services, Ctr Dis Control Prev 2011;201(1).

    Google Scholar 

  11. Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49(12):2208–11.

    Article  CAS  PubMed  Google Scholar 

  12. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129–40.

    Article  CAS  PubMed  Google Scholar 

  13. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  14. Mbanya JC, Motala AA, Sobngwi E, Assah FK, Enoru ST. Diabetes in sub-Saharan Africa. Lancet (London, England). 2010;375(9733):2254–66.

    Article  Google Scholar 

  15. Bello-Chavolla OY, Rojas-Martinez R, Aguilar-Salinas CA, Hernández-Avila M. Epidemiology of diabetes mellitus in Mexico. Nutr Rev. 2017;75(suppl_1):4–12.

    Article  PubMed  Google Scholar 

  16. Pinhas-Hamiel O, Zeitler P. The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr. 2005;146(5):693–700.

    Article  PubMed  Google Scholar 

  17. Liese AD, D’Agostino RB Jr, Hamman RF, Kilgo PD, Lawrence JM, Liu LL, et al. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics. 2006;118(4):1510–8.

    Article  PubMed  Google Scholar 

  18. Dabelea D, Bell RA, D’Agostino RB Jr, Imperatore G, Johansen JM, Linder B, et al. Incidence of diabetes in youth in the United States. JAMA. 2007;297(24):2716–24.

    Article  PubMed  Google Scholar 

  19. Li C, Ford ES, Zhao G, Mokdad AH. Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: National Health and Nutrition Examination Survey 2005–2006. Diabetes Care. 2009;32(2):342–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med. 2002;346(11):802–10.

    Article  CAS  PubMed  Google Scholar 

  21. Goran MI, Bergman RN, Avila Q, Watkins M, Ball GD, Shaibi GQ, et al. Impaired glucose tolerance and reduced beta-cell function in overweight Latino children with a positive family history for type 2 diabetes. J Clin Endocrinol Metab. 2004;89(1):207–12.

    Article  CAS  PubMed  Google Scholar 

  22. Roglic G, Unwin N, Bennett PH, Mathers C, Tuomilehto J, Nag S, et al. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care. 2005;28(9):2130–5.

    Article  PubMed  Google Scholar 

  23. Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001;44(Suppl 2):S14–21.

    Article  PubMed  Google Scholar 

  24. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21(9):1414–31.

    Article  CAS  PubMed  Google Scholar 

  25. Hogan P, Dall T, Nikolov P. Economic costs of diabetes in the US in 2002. Diabetes Care. 2003;26(3):917–32.

    Article  PubMed  Google Scholar 

  26. Dall TM, Zhang Y, Chen YJ, Quick WW, Yang WG, Fogli J. The economic burden of diabetes. Health Aff. 2010;29(2):297–303.

    Article  Google Scholar 

  27. Herman WH. The global burden of diabetes: an overview. In: Dagogo-Jack S, editor. Diabetes mellitus in developing countries and underserved communities. Cham: Springer; 2017.

    Google Scholar 

  28. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Supplement 1):S62–S9.

    Article  Google Scholar 

  29. Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–82.

    Article  PubMed  CAS  Google Scholar 

  30. Ackermann RT, Cheng YJ, Williamson DF, Gregg EW. Identifying adults at high risk for diabetes and cardiovascular disease using hemoglobin A1c National Health and Nutrition Examination Survey 2005–2006. Am J Prev Med. 2011;40(1):11–7.

    Article  PubMed  Google Scholar 

  31. Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet (London, England). 2011;378(9786):169–81.

    Article  Google Scholar 

  32. Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  34. Leahy JL. Pathogenesis of type 2 diabetes mellitus. Arch Med Res. 2005;36(3):197–209.

    Article  CAS  PubMed  Google Scholar 

  35. Defronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? Diabetes. 2010;59(5):1117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Unger RH, Scherer PE. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab. 2010;21(6):345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet (London, England). 1997;350(Suppl 1):Si9–13.

    Article  Google Scholar 

  39. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.

    Article  CAS  PubMed  Google Scholar 

  40. Rozenman Y, Sapoznikov D, Mosseri M, Gilon D, Lotan C, Nassar H, et al. Long-term angiographic follow-up of coronary balloon angioplasty in patients with diabetes mellitus: a clue to the explanation of the results of the BARI study. Balloon Angioplasty Revascularization Investigation. J Am Coll Cardiol. 1997;30(6):1420–5.

    Article  CAS  PubMed  Google Scholar 

  41. Renkin EM. Capillary transport of macromolecules: pores and other endothelial pathways. J Appl Physiol (Bethesda, Md : 1985). 1985;58(2):315–25.

    Article  CAS  Google Scholar 

  42. Stehouwer CD, Lambert J, Donker AJ, van Hinsbergh VW. Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc Res. 1997;34(1):55–68.

    Article  CAS  PubMed  Google Scholar 

  43. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  CAS  PubMed  Google Scholar 

  44. Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol. 2009;15(33):4137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  PubMed  Google Scholar 

  46. Kalousova M, Skrha J, Zima T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol Res. 2002;51(6):597–604.

    CAS  PubMed  Google Scholar 

  47. Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJ, Stehouwer CD, et al. Endothelial dysfunction in (pre) diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev Endocr Metab Disord. 2013;14(1):39–48.

    Article  PubMed  Google Scholar 

  48. Kubisz P, Stančiaková L, Staško J, Galajda P, Mokáň M. Endothelial and platelet markers in diabetes mellitus type 2. World J Diabetes. 2015;6(3):423.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Grant PJ. Diabetes mellitus as a prothrombotic condition. J Intern Med. 2007;262(2):157–72.

    Article  CAS  PubMed  Google Scholar 

  50. Carmassi F, Morale M, Puccetti R, De Negri F, Monzani F, Navalesi R, et al. Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb Res. 1992;67(6):643–54.

    Article  CAS  PubMed  Google Scholar 

  51. Vukovich T, Proidl S, Knobl P, Teufelsbauer H, Schnack C, Schernthaner G. The effect of insulin treatment on the balance between tissue plasminogen activator and plasminogen activator inhibitor-1 in type 2 diabetic patients. Thromb Haemost. 1992;68(3):253–6.

    CAS  PubMed  Google Scholar 

  52. Vlassara H. Recent progress in advanced glycation end products and diabetic complications. Diabetes. 1997;46(Suppl 2):S19–25.

    Article  CAS  PubMed  Google Scholar 

  53. Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J Clin Invest. 1998;101(9):1905–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tooke JE. Microvascular function in human diabetes. A physiological perspective. Diabetes. 1995;44(7):721–6.

    Article  CAS  PubMed  Google Scholar 

  55. Poston L, Taylor PD. Glaxo/MRS Young Investigator Prize. Endothelium-mediated vascular function in insulin-dependent diabetes mellitus. Clin Sci (London, England: 1979). 1995;88(3):245–55.

    Article  CAS  Google Scholar 

  56. Rattan V, Sultana C, Shen Y, Kalra VK. Oxidant stress-induced transendothelial migration of monocytes is linked to phosphorylation of PECAM-1. Am J Phys. 1997;273(3 Pt 1):E453–61.

    CAS  Google Scholar 

  57. Cagliero E, Roth T, Roy S, Lorenzi M. Characteristics and mechanisms of high-glucose-induced overexpression of basement membrane components in cultured human endothelial cells. Diabetes. 1991;40(1):102–10.

    Article  CAS  PubMed  Google Scholar 

  58. Rahman S, Rahman T, Ismail AA, Rashid AR. Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab. 2007;9(6):767–80.

    Article  CAS  PubMed  Google Scholar 

  59. Kubisz P, Chudy P, Stasko J, Galajda P, Holly P, Vysehradsky R, et al. Circulating vascular endothelial growth factor in the normo- and/or microalbuminuric patients with type 2 diabetes mellitus. Acta Diabetol. 2010;47(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  60. Meigs JB, O'Donnell CJ, Tofler GH, Benjamin EJ, Fox CS, Lipinska I, et al. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: the Framingham offspring study. Diabetes. 2006;55(2):530–7.

    Article  CAS  PubMed  Google Scholar 

  61. Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K, et al. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J Am Coll Cardiol. 2013;62(8):667–76.

    Article  CAS  PubMed  Google Scholar 

  62. Mormile A, Veglio M, Gruden G, Girotto M, Rossetto P, D'Este P, et al. Physiological inhibitors of blood coagulation and prothrombin fragment F 1 + 2 in type 2 diabetic patients with normoalbuminuria and incipient nephropathy. Acta Diabetol. 1996;33(3):241–5.

    Article  CAS  PubMed  Google Scholar 

  63. Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA. 2004;291(16):1978–86.

    Article  CAS  PubMed  Google Scholar 

  64. Fielding CJ, Reaven GM, Liu G, Fielding PE. Increased free cholesterol in plasma low and very low density lipoproteins in non-insulin-dependent diabetes mellitus: its role in the inhibition of cholesteryl ester transfer. Proc Natl Acad Sci U S A. 1984;81(8):2512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes. Diabetes. 2003;52(3):812–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hohenstein B, Hugo CP, Hausknecht B, Boehmer KP, Riess RH, Schmieder RE. Analysis of NO-synthase expression and clinical risk factors in human diabetic nephropathy. Nephrol Dial Transplant. 2008;23(4):1346–54.

    Article  CAS  PubMed  Google Scholar 

  67. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  68. Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 2011;48(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  69. Weber M, Baker MB, Moore JP, Searles CD. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun. 2010;393(4):643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim JH, Nishina PM, Naggert JK. Genetic models for non insulin dependent diabetes mellitus in rodents. J Basic Clin Physiol Pharmacol. 1998;9(2–4):325–45.

    CAS  PubMed  Google Scholar 

  71. Islam MS, Loots du T. Experimental rodent models of type 2 diabetes: a review. Methods Find Exp Clin Pharmacol. 2009;31(4):249–61.

    Article  CAS  PubMed  Google Scholar 

  72. Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science (New York, NY). 1976;193(4251):415–7.

    Article  CAS  Google Scholar 

  73. Baird TA, Parsons MW, Barber PA, Butcher KS, Desmond PM, Tress BM, et al. The influence of diabetes mellitus and hyperglycaemia on stroke incidence and outcome. J Clin Neurosci: Off J Neurosurg Soc Aust. 2002;9(6):618–26.

    Article  Google Scholar 

  74. Borch-Johnsen K. The prognosis of insulin-dependent diabetes mellitus. An epidemiological approach. Dan Med Bull. 1989;36(4):336–48.

    CAS  PubMed  Google Scholar 

  75. Dorman JS, Laporte RE, Kuller LH, Cruickshanks KJ, Orchard TJ, Wagener DK, et al. The Pittsburgh insulin-dependent diabetes mellitus (IDDM) morbidity and mortality study. Mortal Results Diabetes. 1984;33(3):271–6.

    CAS  Google Scholar 

  76. Hagg S, Thorn LM, Putaala J, Liebkind R, Harjutsalo V, Forsblom CM, et al. Incidence of stroke according to presence of diabetic nephropathy and severe diabetic retinopathy in patients with type 1 diabetes. Diabetes Care. 2013;36(12):4140–6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Janghorbani M, Hu FB, Willett WC, Li TY, Manson JE, Logroscino G, et al. Prospective study of type 1 and type 2 diabetes and risk of stroke subtypes: the Nurses’ Health Study. Diabetes Care. 2007;30(7):1730–5.

    Article  PubMed  Google Scholar 

  78. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke. 2001;32(10):2426–32.

    Article  CAS  PubMed  Google Scholar 

  79. Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: a vascular perspective. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2007;27(3):435–51.

    Article  CAS  Google Scholar 

  80. Kaarisalo MM, Raiha I, Sivenius J, Immonen-Raiha P, Lehtonen A, Sarti C, et al. Diabetes worsens the outcome of acute ischemic stroke. Diabetes Res Clin Pract. 2005;69(3):293–8.

    Article  PubMed  Google Scholar 

  81. Idris I, Thomson GA, Sharma JC. Diabetes mellitus and stroke. Int J Clin Pract. 2006;60(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  82. Lithner F, Asplund K, Eriksson S, Hagg E, Strand T, Wester PO. Clinical characteristics in diabetic stroke patients. Diabete Metab. 1988;14(1):15–9.

    CAS  PubMed  Google Scholar 

  83. Karapanayiotides T, Piechowski-Jozwiak B, van Melle G, Bogousslavsky J, Devuyst G. Stroke patterns, etiology, and prognosis in patients with diabetes mellitus. Neurology. 2004;62(9):1558–62.

    Article  PubMed  Google Scholar 

  84. Arauz A, Murillo L, Cantu C, Barinagarrementeria F, Higuera J. Prospective study of single and multiple lacunar infarcts using magnetic resonance imaging: risk factors, recurrence, and outcome in 175 consecutive cases. Stroke. 2003;34(10):2453–8.

    Article  PubMed  Google Scholar 

  85. Pinto A, Tuttolomondo A, Di Raimondo D, Di Sciacca R, Fernandez P, Di Gati M, et al. A case control study between diabetic and non-diabetic subjects with ischemic stroke. Int Angiol: J Int Union Angiol. 2007;26(1):26–32.

    CAS  Google Scholar 

  86. Johnston SC, Sidney S, Bernstein AL, Gress DR. A comparison of risk factors for recurrent TIA and stroke in patients diagnosed with TIA. Neurology. 2003;60(2):280–5.

    Article  PubMed  Google Scholar 

  87. Iwase M, Yamamoto M, Yoshinari M, Ibayashi S, Fujishima M. Stroke topography in diabetic and nondiabetic patients by magnetic resonance imaging. Diabetes Res Clin Pract. 1998;42(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  88. Mankovsky BN, Patrick JT, Metzger BE, Saver JL. The size of subcortical ischemic infarction in patients with and without diabetes mellitus. Clin Neurol Neurosurg. 1996;98(2):137–41.

    Article  CAS  PubMed  Google Scholar 

  89. Weimar C, Mieck T, Buchthal J, Ehrenfeld CE, Schmid E, Diener HC. Neurologic worsening during the acute phase of ischemic stroke. Arch Neurol. 2005;62(3):393–7.

    Article  PubMed  Google Scholar 

  90. Baird TA, Parsons MW, Phan T, Butcher KS, Desmond PM, Tress BM, et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 2003;34(9):2208–14.

    Article  CAS  PubMed  Google Scholar 

  91. Alvarez-Sabin J, Molina CA, Montaner J, Arenillas JF, Huertas R, Ribo M, et al. Effects of admission hyperglycemia on stroke outcome in reperfused tissue plasminogen activator – treated patients. Stroke. 2003;34(5):1235–41.

    Article  PubMed  Google Scholar 

  92. Chen J, Cui X, Zacharek A, Cui Y, Roberts C, Chopp M. White matter damage and the effect of matrix metalloproteinases in type 2 diabetic mice after stroke. Stroke. 2011;42(2):445–52.

    Article  CAS  PubMed  Google Scholar 

  93. Ye X, Chopp M, Cui X, Zacharek A, Cui Y, Yan T, et al. Niaspan enhances vascular remodeling after stroke in type 1 diabetic rats. Exp Neurol. 2011;232(2):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Weir CJ, Murray GD, Dyker AG, Lees KR. Is hyperglycaemia an independent predictor of poor outcome after acute stroke? Results of a long-term follow up study. BMJ (Clin Res Ed). 1997;314(7090):1303–6.

    Article  CAS  Google Scholar 

  95. Bruno A, Levine SR, Frankel MR, Brott TG, Lin Y, Tilley BC, et al. Admission glucose level and clinical outcomes in the NINDS rt-PA Stroke Trial. Neurology. 2002;59(5):669–74.

    Article  CAS  PubMed  Google Scholar 

  96. Ergul A, Elgebaly MM, Middlemore ML, Li W, Elewa H, Switzer JA, et al. Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes. BMC Neurol. 2007;7:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wei N, Yu SP, Gu XH, Chen DD, Whalin MK, Xu GL, et al. The involvement of autophagy pathway in exaggerated ischemic brain damage in diabetic mice. CNS Neurosci Ther. 2013;19(10):753–63.

    CAS  PubMed  Google Scholar 

  98. Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 2001;24(12):719–25.

    Article  CAS  PubMed  Google Scholar 

  99. Ennis SR, Keep RF. Effect of sustained-mild and transient-severe hyperglycemia on ischemia-induced blood-brain barrier opening. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2007;27(9):1573–82.

    Article  CAS  Google Scholar 

  100. Mooradian AD, Haas MJ, Batejko O, Hovsepyan M, Feman SS. Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats. Diabetes. 2005;54(10):2977–82.

    Article  CAS  PubMed  Google Scholar 

  101. Bohlen HG, Niggl BA. Early arteriolar disturbances following streptozotocin-induced diabetes mellitus in adult mice. Microvasc Res. 1980;20(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  102. Siperstein MD, Unger RH, Madison LL. Studies of muscle capillary basement membranes in normal subjects, diabetic, and prediabetic patients. J Clin Invest. 1968;47(9):1973–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Singh H, Brindle NP, Zammit VA. High glucose and elevated fatty acids suppress signaling by the endothelium protective ligand angiopoietin-1. Microvasc Res. 2010;79(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  104. Chen JX, Stinnett A. Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in type II diabetic mice. Arterioscler Thromb Vasc Biol. 2008;28(9):1606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cui X, Chopp M, Zacharek A, Ye X, Roberts C, Chen J. Angiopoietin/Tie2 pathway mediates type 2 diabetes induced vascular damage after cerebral stroke. Neurobiol Dis. 2011;43(1):285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 1998;29(10):2189–95.

    Article  CAS  PubMed  Google Scholar 

  107. Mun-Bryce S, Rosenberg GA. Gelatinase B modulates selective opening of the blood-brain barrier during inflammation. Am J Phys. 1998;274(5 Pt 2):R1203–11.

    CAS  Google Scholar 

  108. Wachtel M, Frei K, Ehler E, Fontana A, Winterhalter K, Gloor SM. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J Cell Sci. 1999;112(Pt 23):4347–56.

    CAS  PubMed  Google Scholar 

  109. Kadoglou NP, Daskalopoulou SS, Perrea D, Liapis CD. Matrix metalloproteinases and diabetic vascular complications. Angiology. 2005;56(2):173–89.

    Article  PubMed  Google Scholar 

  110. Derosa G, Avanzini MA, Geroldi D, Fogari R, Lorini R, De Silvestri A, et al. Matrix metalloproteinase 2 may be a marker of microangiopathy in children and adolescents with type 1 diabetes mellitus. Diabetes Res Clin Pract. 2005;70(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  111. Signorelli SS, Malaponte G, Libra M, Di Pino L, Celotta G, Bevelacqua V, et al. Plasma levels and zymographic activities of matrix metalloproteinases 2 and 9 in type II diabetics with peripheral arterial disease. Vasc Med (London, England). 2005;10(1):1–6.

    Article  Google Scholar 

  112. Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 2007;50(1):202–11.

    Article  CAS  PubMed  Google Scholar 

  113. Reeson P, Jeffery A, Brown CE. Illuminating the effects of stroke on the diabetic brain: insights from imaging neural and vascular networks in experimental animal models. Diabetes. 2016;65(7):1779–88.

    Article  CAS  PubMed  Google Scholar 

  114. Fagan SC, Garcia JH. Hemorrhagic transformation in focal cerebral ischemia: influence of time to artery reopening and tissue plasminogen activator. Pharmacotherapy. 1999;19(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  115. McCuskey PA, McCuskey RS. In vivo and electron microscopic study of the development of cerebral diabetic microangiography. Microcirc Endothel Lymphat. 1984;1(2):221–44.

    CAS  Google Scholar 

  116. Elgebaly MM, Prakash R, Li W, Ogbi S, Johnson MH, Mezzetti EM, et al. Vascular protection in diabetic stroke: role of matrix metalloprotease-dependent vascular remodeling. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30(12):1928–38.

    Article  CAS  Google Scholar 

  117. Sima AA, Kamiya H, Li ZG. Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol. 2004;490(1–3):187–97.

    Article  CAS  PubMed  Google Scholar 

  118. Last D, Alsop DC, Abduljalil AM, Marquis RP, de Bazelaire C, Hu K, et al. Global and regional effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity. Diabetes Care. 2007;30(5):1193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cholerton B, Baker LD, Craft S. Insulin, cognition, and dementia. Eur J Pharmacol. 2013;719(1–3):170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology. 1999;53(9):1937–42.

    Article  CAS  PubMed  Google Scholar 

  121. Ohara T, Doi Y, Ninomiya T, Hirakawa Y, Hata J, Iwaki T, et al. Glucose tolerance status and risk of dementia in the community: the Hisayama study. Neurology. 2011;77(12):1126–34.

    Article  CAS  PubMed  Google Scholar 

  122. Nelson PT, Smith CD, Abner EA, Schmitt FA, Scheff SW, Davis GJ, et al. Human cerebral neuropathology of type 2 diabetes mellitus. Biochim Biophys Acta. 2009;1792(5):454–69.

    Article  CAS  PubMed  Google Scholar 

  123. Reijmer YD, Brundel M, De Bresser J, Kappelle LJ, Leemans A, Biessels GJ, et al. Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes. Diabetes Care. 2013;36(1):137–44.

    Article  PubMed  Google Scholar 

  124. Ding G, Chen J, Chopp M, Li L, Yan T, Davoodi-Bojd E, et al. White matter changes after stroke in type 2 diabetic rats measured by diffusion magnetic resonance imaging. J Cereb Blood Flow Metab. 2017;37(1):241–51.

    Article  CAS  PubMed  Google Scholar 

  125. Yatomi Y, Tanaka R, Shimada Y, Yamashiro K, Liu M, Mitome-Mishima Y, et al. Type 2 diabetes reduces the proliferation and survival of oligodendrocyte progenitor cells in ischemic white matter lesions. Neuroscience. 2015;289:214–23.

    Article  CAS  PubMed  Google Scholar 

  126. Gumy LF, Bampton ET, Tolkovsky AM. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci. 2008;37(2):298–311.

    Article  CAS  PubMed  Google Scholar 

  127. Knoflach M, Matosevic B, Rucker M, Furtner M, Mair A, Wille G, et al. Functional recovery after ischemic stroke – a matter of age: data from the Austrian Stroke Unit Registry. Neurology. 2012;78(4):279–85.

    Article  CAS  PubMed  Google Scholar 

  128. Liman TG, Heuschmann PU, Endres M, Floel A, Schwab S, Kolominsky-Rabas PL. Changes in cognitive function over 3 years after first-ever stroke and predictors of cognitive impairment and long-term cognitive stability: the Erlangen Stroke Project. Dement Geriatr Cogn Disord. 2011;31(4):291–9.

    Article  CAS  PubMed  Google Scholar 

  129. Megherbi SE, Milan C, Minier D, Couvreur G, Osseby GV, Tilling K, et al. Association between diabetes and stroke subtype on survival and functional outcome 3 months after stroke: data from the European BIOMED Stroke Project. Stroke. 2003;34(3):688–94.

    Article  PubMed  Google Scholar 

  130. Sweetnam D, Holmes A, Tennant KA, Zamani A, Walle M, Jones P, et al. Diabetes impairs cortical plasticity and functional recovery following ischemic stroke. J Neurosci: Off J Soc Neurosci. 2012;32(15):5132–43.

    Article  CAS  Google Scholar 

  131. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.

    Article  CAS  PubMed  Google Scholar 

  132. Slevin M, Kumar P, Gaffney J, Kumar S, Krupinski J. Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clin Sci (London, England: 1979). 2006;111(3):171–83.

    Article  CAS  Google Scholar 

  133. Vannucci SJ, Willing LB, Goto S, Alkayed NJ, Brucklacher RM, Wood TL, et al. Experimental stroke in the female diabetic, db/db, mouse. J Cereb Blood Flow Metab. 2001;21(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  134. Zhu M, Bi X, Jia Q, Shangguan S. The possible mechanism for impaired angiogenesis after transient focal ischemia in type 2 diabetic GK rats: different expressions of angiostatin and vascular endothelial growth factor. Biomed Pharmacother = Biomed Pharmacother. 2010;64(3):208–13.

    Article  CAS  PubMed  Google Scholar 

  135. Prakash R, Li W, Qu Z, Johnson MA, Fagan SC, Ergul A. Vascularization pattern after ischemic stroke is different in control versus diabetic rats: relevance to stroke recovery. Stroke. 2013;44(10):2875–82.

    Article  PubMed  Google Scholar 

  136. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.

    Article  CAS  PubMed  Google Scholar 

  137. Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci: Off J Soc Neurosci. 2009;29(6):1719–34.

    Article  CAS  Google Scholar 

  138. Yan T, Chopp M, Ye X, Liu Z, Zacharek A, Cui Y, et al. Niaspan increases axonal remodeling after stroke in type 1 diabetes rats. Neurobiol Dis. 2012;46(1):157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Reeson P, Tennant KA, Gerrow K, Wang J, Weiser Novak S, Thompson K, et al. Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner. J Neurosci: Off J Soc Neurosci. 2015;35(13):5128–43.

    Article  CAS  Google Scholar 

  140. De Bresser J, Tiehuis AM, Van Den Berg E, Reijmer YD, Jongen C, Kappelle LJ, et al. Progression of cerebral atrophy and white matter hyperintensities in patients with type 2 diabetes. Diabetes Care. 2010;33(6):1309–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Kooistra M, Geerlings MI, Mali WP, Vincken KL, van der Graaf Y, Biessels GJ, et al. Diabetes mellitus and progression of vascular brain lesions and brain atrophy in patients with symptomatic atherosclerotic disease. The SMART-MR study. J Neurol Sci. 2013;332(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  142. Korf E, Van Straaten E, De Leeuw FE, Van Der Flier W, Barkhof F, Pantoni L, et al. Diabetes mellitus, hypertension and medial temporal lobe atrophy: the LADIS study. Diabet Med. 2007;24(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  143. Jongen C, Van Der Grond J, Kappelle L, Biessels G, Viergever MA, Pluim J, et al. Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus. Diabetologia. 2007;50(7):1509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ding G, Chen J, Chopp M, Li L, Yan T, Davoodi-Bojd E, et al. White matter changes after stroke in type 2 diabetic rats measured by diffusion magnetic resonance imaging. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2017;37(1):241–51.

    Article  CAS  Google Scholar 

  145. Ding G, Yan T, Chen J, Chopp M, Li L, Li Q, et al. Persistent cerebrovascular damage after stroke in type two diabetic rats measured by magnetic resonance imaging. Stroke. 2015;46(2):507–12.

    Article  PubMed  Google Scholar 

  146. D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci. 2003;4(11):863–72.

    Article  PubMed  CAS  Google Scholar 

  147. Musen G, Jacobson AM, Bolo NR, Simonson DC, Shenton ME, McCartney RL, et al. Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes. 2012;61(9):2375–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Xia W, Wang S, Sun Z, Bai F, Zhou Y, Yang Y, et al. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology. 2013;38(11):2493–501.

    Article  PubMed  Google Scholar 

  149. Fülesdi B, Limburg M, Bereczki D, Káplár M, Molnár C, Kappelmayer J, et al. Cerebrovascular reactivity and reserve capacity in type II diabetes mellitus. J Diabetes Complicat. 1999;13(4):191–9.

    Article  PubMed  Google Scholar 

  150. van Oers CA, Manschot SM, Van Huffelen A, Kappelle LJ, Biessels GJ. Cerebrovascular reserve capacity is preserved in a population-based sample of patients with type 2 diabetes mellitus. Cerebrovasc Dis. 2006;22(1):46–50.

    Article  PubMed  Google Scholar 

  151. Tiehuis A, Vincken K, Van Den Berg E, Hendrikse J, Manschot S, Mali W, et al. Cerebral perfusion in relation to cognitive function and type 2 diabetes. Diabetologia. 2008;51(7):1321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nolan CJ. Controversies in gestational diabetes. Best Pract Res Clin Obstet Gynaecol. 2011;25(1):37–49.

    Article  PubMed  Google Scholar 

  153. Lauenborg J, Hansen T, Jensen DM, Vestergaard H, Mølsted-Pedersen L, Hornnes P, et al. Increasing incidence of diabetes after gestational diabetes. Diabetes Care. 2004;27(5):1194–9.

    Article  PubMed  Google Scholar 

  154. Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, et al. Child health, developmental plasticity, and epigenetic programming. Endocr Rev. 2011;32(2):159–224.

    Article  CAS  PubMed  Google Scholar 

  155. Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab. 2010;21(4):223–9.

    Article  CAS  PubMed  Google Scholar 

  156. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.

    Article  CAS  PubMed  Google Scholar 

  157. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  158. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.

    Article  CAS  PubMed  Google Scholar 

  159. American Diabetes Association. Standards of medical care in diabetes-2015 abridged for primary care providers. Clin Diabetes: Publ Am Diabetes Assoc. 2015;33(2):97–111.

    Article  Google Scholar 

  160. Scheen AJ. Antidiabetic agents in subjects with mild dysglycaemia: prevention or early treatment of type 2 diabetes? Diabetes Metab. 2007;33(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  161. Kawamori R, Tajima N, Iwamoto Y, Kashiwagi A, Shimamoto K, Kaku K. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet (London, England). 2009;373(9675):1607–14.

    Article  CAS  Google Scholar 

  162. Zinman B, Harris SB, Neuman J, Gerstein HC, Retnakaran RR, Raboud J, et al. Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (CANOE trial): a double-blind randomised controlled study. Lancet (London, England). 2010;376(9735):103–11.

    Article  CAS  Google Scholar 

  163. Fox CS, Golden SH, Anderson C, Bray GA, Burke LE, de Boer IH, et al. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation. 2015;132(8):691–718.

    Article  CAS  PubMed  Google Scholar 

  164. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    Article  CAS  PubMed  Google Scholar 

  165. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ (Clin Re Ed). 2000;321(7258):405–12.

    Article  CAS  Google Scholar 

  166. Schrier RW, Estacio RO, Esler A, Mehler P. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. 2002;61(3):1086–97.

    Article  PubMed  Google Scholar 

  167. Health NIo. Landmark ACCORD trial finds intensive blood pressure and combination lipid therapies do not reduce combined cardiovascular events in adults with diabetes [article online], 2010. 2010.

    Google Scholar 

  168. Association AD. 8. Cardiovascular disease and risk management. Diabetes Care. 2016;39(Supplement 1):S60–71.

    Article  Google Scholar 

  169. Reisin E, Harris RC, Rahman M. Commentary on the 2014 BP guidelines from the panel appointed to the Eighth Joint National Committee (JNC 8). J Am Soc Nephrol: JASN. 2014;25(11):2419–24.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press. 2013;22(4):193–278.

    Article  Google Scholar 

  171. Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet (London, England). 2003;361(9374):2005–16.

    Article  CAS  Google Scholar 

  172. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet (London, England). 2004;364(9435):685–96.

    Article  CAS  Google Scholar 

  173. Anthonisen NR, Skeans MA, Wise RA, Manfreda J, Kanner RE, Connett JE. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med. 2005;142(4):233–9.

    Article  PubMed  Google Scholar 

  174. De Berardis G, Sacco M, Strippoli GF, Pellegrini F, Graziano G, Tognoni G, et al. Aspirin for primary prevention of cardiovascular events in people with diabetes: meta-analysis of randomised controlled trials. BMJ (Clin Res Ed). 2009;339:b4531.

    Article  Google Scholar 

  175. Ergul A, Li W, Elgebaly MM, Bruno A, Fagan SC. Hyperglycemia, diabetes and stroke: focus on the cerebrovasculature. Vasc Pharmacol. 2009;51(1):44–9.

    Article  CAS  Google Scholar 

  176. Bruno A, Kent TA, Coull BM, Shankar RR, Saha C, Becker KJ, et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke. 2008;39(2):384–9.

    Article  CAS  PubMed  Google Scholar 

  177. Gray CS, Hildreth AJ, Sandercock PA, O'Connell JE, Johnston DE, Cartlidge NE, et al. Glucose-potassium-insulin infusions in the management of post-stroke hyperglycaemia: the UK Glucose Insulin in Stroke Trial (GIST-UK). Lancet Neurol. 2007;6(5):397–406.

    Article  CAS  PubMed  Google Scholar 

  178. Johnston KC, Hall CE, Kissela BM, Bleck TP, Conaway MR. Glucose Regulation in Acute Stroke Patients (GRASP) trial: a randomized pilot trial. Stroke. 2009;40(12):3804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rosso C, Corvol JC, Pires C, Crozier S, Attal Y, Jacqueminet S, et al. Intensive versus subcutaneous insulin in patients with hyperacute stroke: results from the randomized INSULINFARCT trial. Stroke. 2012;43(9):2343–9.

    Article  PubMed  Google Scholar 

  180. Elewa HF, Kozak A, El-Remessy AB, Frye RF, Johnson MH, Ergul A, et al. Early atorvastatin reduces hemorrhage after acute cerebral ischemia in diabetic rats. J Pharmacol Exp Ther. 2009;330(2):532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Suda S, Ueda M, Nito C, Nishiyama Y, Okubo S, Abe A, et al. Valproic acid ameliorates ischemic brain injury in hyperglycemic rats with permanent middle cerebral occlusion. Brain Res. 1606;2015:1–8.

    Google Scholar 

  182. El-Sahar AE, Safar MM, Zaki HF, Attia AS, Ain-Shoka AA. Sitagliptin attenuates transient cerebral ischemia/reperfusion injury in diabetic rats: implication of the oxidative-inflammatory-apoptotic pathway. Life Sci. 2015;126:81–6.

    Article  CAS  PubMed  Google Scholar 

  183. Iwata N, Takayama H, Xuan M, Kamiuchi S, Matsuzaki H, Okazaki M, et al. Effects of etanercept against transient cerebral ischemia in diabetic rats. Biomed Res Int. 2015;2015:189292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Darsalia V, Hua S, Larsson M, Mallard C, Nathanson D, Nystrom T, et al. Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization. PLoS One. 2014;9(8):e103114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Moghaddam HK, Baluchnejadmojarad T, Roghani M, Khaksari M, Norouzi P, Ahooie M, et al. Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats. Mol Neurobiol. 2014;49(2):820–6.

    Article  CAS  PubMed  Google Scholar 

  186. Ning R, Chopp M, Zacharek A, Yan T, Zhang C, Roberts C, et al. Neamine induces neuroprotection after acute ischemic stroke in type one diabetic rats. Neuroscience. 2014;257:76–85.

    Article  CAS  PubMed  Google Scholar 

  187. Bhasin A, Srivastava MV, Mohanty S, Bhatia R, Kumaran SS, Bose S. Stem cell therapy: a clinical trial of stroke. Clin Neurol Neurosurg. 2013;115(7):1003–8.

    Article  PubMed  Google Scholar 

  188. Burns TC, Verfaillie CM, Low WC. Stem cells for ischemic brain injury: a critical review. J Comp Neurol. 2009;515(1):125–44.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16.

    Article  CAS  PubMed  Google Scholar 

  190. Sharma HS, Feng L, Lafuente JV, Muresanu DF, Tian ZR, Patnaik R, et al. TiO2-Nanowired delivery of mesenchymal stem cells thwarts diabetes- induced exacerbation of brain pathology in heat stroke: an experimental study in the rat using morphological and biochemical approaches. CNS Neurol Disord Drug Targets. 2015;14(3):386–99.

    Article  CAS  PubMed  Google Scholar 

  191. Bajpai VK, Andreadis ST. Stem cell sources for vascular tissue engineering and regeneration. Tissue Eng Part B Rev. 2012;18(5):405–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600.

    Article  PubMed  Google Scholar 

  193. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol. 2012;53(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  194. Zheng H, Fu G, Dai T, Huang H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol. 2007;50(3):274–80.

    Article  CAS  PubMed  Google Scholar 

  195. Bai YY, Wang L, Chang D, Zhao Z, Lu CQ, Wang G, et al. Synergistic effects of transplanted endothelial progenitor cells and RWJ 67657 in diabetic ischemic stroke models. Stroke. 2015;46(7):1938–46.

    Article  CAS  PubMed  Google Scholar 

  196. Ding G, Chen J, Chopp M, Li L, Yan T, Li Q, et al. Cell treatment for stroke in type two diabetic rats improves vascular permeability measured by MRI. PLoS One. 2016;11(2):e0149147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Hu J, Liu B, Zhao Q, Jin P, Hua F, Zhang Z, et al. Bone marrow stromal cells inhibits HMGB1-mediated inflammation after stroke in type 2 diabetic rats. Neuroscience. 2016;324:11–9.

    Article  CAS  PubMed  Google Scholar 

  198. Chen J, Ye X, Yan T, Zhang C, Yang XP, Cui X, et al. Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats. Stroke. 2011;42(12):3551–8.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Yan T, Ye X, Chopp M, Zacharek A, Ning R, Venkat P, et al. Niaspan attenuates the adverse effects of bone marrow stromal cell treatment of stroke in type one diabetic rats. PLoS One. 2013;8(11):e81199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Yan T, Venkat P, Chopp M, Zacharek A, Ning R, Cui Y, et al. Neurorestorative therapy of stroke in type 2 diabetes mellitus rats treated with human umbilical cord blood cells. Stroke. 2015;46(9):2599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yan T, Venkat P, Ye X, Chopp M, Zacharek A, Ning R, et al. HUCBCs increase angiopoietin 1 and induce neurorestorative effects after stroke in T1DM rats. CNS Neurosci Ther. 2014;20(10):935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chen J, Ning R, Zacharek A, Cui C, Cui X, Yan T, et al. MiR-126 contributes to human umbilical cord blood cell-induced neurorestorative effects after stroke in type-2 diabetic mice. Stem Cells (Dayton, Ohio). 2016;34(1):102–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, T., Geng, J., Zhang, Z. (2017). Diabetics and Stroke. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_9

Download citation

Publish with us

Policies and ethics