Skip to main content

Hypertension and Stroke

  • Chapter
  • First Online:
Book cover Translational Research in Stroke

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 1140 Accesses

Abstract

Hypertension is considered as the most important contributor to stroke patients among all the risk factors. Over 70% of stroke patients accompany with chronic hypertension. Hypertension could induce the brain vascular system change, and these changes likely impair brain blood flow autoregulation and contribute to the increased infarct size after vessel occlusion. As the preclinical researches developed, a better understanding is emerging of how hypertension induces damage of the cerebrovascular dysfunction, raising the possibility of protecting the brain from the ravages of hypertension. The mechanisms that high blood pressure increased incidence and severity of stroke in hypertensive patients remain poorly understand. The appropriate blood control will promote function and potentially repair ischemia damaged of stroke patients. By examining hypertension and antihypertensive treatments in hypertensive animal stroke models, we may develop a better understanding of how to manage hypertension in the acute stroke setting. And with our constantly broaden understanding of hypertensive mechanisms, scientist now have the opportunity to develop new strategies to control blood pressure in the acute stroke therapy or chronic blood pressure management after stroke, which could help recovery or prevent stroke recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AHA:

American Heart Association

AngII:

Angiotensin II

AS:

Arterial stiffening

BBB:

Blood-brain barrier

BP:

Blood pressure

DBP:

Diastolic blood pressure

EPCs:

Endothelial progenitor cells

L-NAME:

L-nitroarginine methyl ester

MCAO:

Middle cerebral artery occlusion

MSCs:

Mesenchymal stem cells

RHRSP:

Stroke-prone renovascular hypertensive rats

SBP:

Systolic blood pressure

SHRs:

Spontaneously hypertensive rats

SHRSP:

Stroke-prone spontaneously hypertensive rats

WKY:

Wistar-Kyoto rat

References

  1. Messerli FH, Williams B, Ritz E. Essential hypertension. Lancet. 2007;370(9587):591–603.

    Article  CAS  PubMed  Google Scholar 

  2. Dahlof B. Prevention of stroke in patients with hypertension. Am J Cardiol. 2007;100(3A):17J–24J.

    Article  PubMed  Google Scholar 

  3. Lackland DT, Roccella EJ, Deutsch AF, Fornage M, George MG, Howard G, et al. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke; J Cereb Circ. 2014;45(1):315–53.

    Article  Google Scholar 

  4. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.

    Article  PubMed  Google Scholar 

  5. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.

    CAS  PubMed  Google Scholar 

  6. Brayden JE, Earley S, Nelson MT, Reading S. Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol. 2008;35(9):1116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barry DI. Cerebral blood flow in hypertension. J Cardiovasc Pharmacol. 1985;7(Suppl 2):S94–8.

    Article  PubMed  Google Scholar 

  8. Baumbach GL, Heistad DD. Cerebral circulation in chronic arterial hypertension. Hypertension. 1988;12(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  9. Immink RV, van den Born BJ, van Montfrans GA, Koopmans RP, Karemaker JM, van Lieshout JJ. Impaired cerebral autoregulation in patients with malignant hypertension. Circulation. 2004;110(15):2241–5.

    Article  PubMed  Google Scholar 

  10. Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke; J Cereb Circ. 2000;31(10):2478–86.

    Article  CAS  Google Scholar 

  11. Andresen J, Shafi NI, Bryan RM Jr. Endothelial influences on cerebrovascular tone. J Appl Physiol. 2006;100(1):318–27.

    Article  CAS  PubMed  Google Scholar 

  12. Didion SP, Faraci FM. Angiotensin II produces superoxide-mediated impairment of endothelial function in cerebral arterioles. Stroke; J Cereb Circ. 2003;34(8):2038–42.

    Article  CAS  Google Scholar 

  13. Kazama K, Wang G, Frys K, Anrather J, Iadecola C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol. 2003;285(5):H1890–9.

    Article  CAS  PubMed  Google Scholar 

  14. Yang ST, Mayhan WG, Faraci FM, Heistad DD. Endothelium-dependent responses of cerebral blood vessels during chronic hypertension. Hypertension. 1991;17(5):612–8.

    Article  CAS  PubMed  Google Scholar 

  15. Lammie GA. Hypertensive cerebral small vessel disease and stroke. Brain Pathol. 2002;12(3):358–70.

    PubMed  Google Scholar 

  16. Laurent S, Boutouyrie P, Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension. 2005;45(6):1050–5.

    Article  CAS  PubMed  Google Scholar 

  17. Baumbach GL, Heistad DD, Siems JE. Effect of sympathetic nerves on composition and distensibility of cerebral arterioles in rats. J Physiol. 1989;416:123–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med. 2006;259(4):351–63.

    Article  CAS  PubMed  Google Scholar 

  19. O’Callaghan CJ, Williams B. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-beta(1). Hypertension. 2000;36(3):319–24.

    Article  PubMed  Google Scholar 

  20. Schiffrin EL, Touyz RM. From bedside to bench to bedside: role of renin-angiotensin-aldosterone system in remodeling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol. 2004;287(2):H435–46.

    Article  CAS  PubMed  Google Scholar 

  21. Chillon JM, Baumbach GL. Effects of an angiotensin-converting enzyme inhibitor and a beta-blocker on cerebral arterioles in rats. Hypertension. 1999;33(3):856–61.

    Article  PubMed  Google Scholar 

  22. Flamant M, Placier S, Dubroca C, Esposito B, Lopes I, Chatziantoniou C, et al. Role of matrix metalloproteinases in early hypertensive vascular remodeling. Hypertension. 2007;50(1):212–8.

    Article  CAS  PubMed  Google Scholar 

  23. Benjo A, Thompson RE, Fine D, Hogue CW, Alejo D, Kaw A, et al. Pulse pressure is an age-independent predictor of stroke development after cardiac surgery. Hypertension. 2007;50(4):630–5.

    Article  CAS  PubMed  Google Scholar 

  24. Chen CT, Li Y, Zhang J, Wang Y, Ling HW, Chen KM, Gao PJ, Zhu DL. Association between ambulatory systolic blood pressure during the day and asymptomatic intracranial arterial stenosis. Hypertension. 2014;63(1):61–7.

    Google Scholar 

  25. Zhang J, Li Y, Wang Y, Niu W, Zhang Y, Gao P, Zhang L, Lin H, Chen K, Zhu D. Arterial stiffness and asymptomatic intracranial large arterial stenosis and calcification in hypertensive chinese. Am J Hypertens. 2011;24(3):304–9.

    Google Scholar 

  26. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  27. Bulpitt CJ, Palmer AJ, Fletcher AE, Beevers DG, Coles EC, Ledingham JG, et al. Relation between treated blood pressure and death from ischaemic heart disease at different ages: a report from the Department of Health Hypertension Care Computing Project. J Hypertens. 1992;10(10):1273–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.

    Article  PubMed  Google Scholar 

  29. Huang Y, Cai X, Li Y, Su L, Mai W, Wang S, et al. Prehypertension and the risk of stroke: a meta-analysis. Neurology. 2014;82(13):1153–61.

    Article  PubMed  Google Scholar 

  30. Lawes CM, Bennett DA, Feigin VL, Rodgers A. Blood pressure and stroke: an overview of published reviews. Stroke; J Cereb Circ. 2004;35(3):776–85.

    Article  Google Scholar 

  31. Turnbull F. Blood pressure lowering treatment Trialists C. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362(9395):1527–35.

    Article  CAS  PubMed  Google Scholar 

  32. Mustanoja S, Putaala J, Gordin D, Tulkki L, Aarnio K, Pirinen J, et al. Acute-phase blood pressure levels correlate with a high risk of recurrent strokes in young-onset ischemic stroke. Stroke; J Cereb Circ. 2016;47(6):1593–8.

    Article  Google Scholar 

  33. Group SPSS, Benavente OR, Coffey CS, Conwit R, Hart RG, McClure LA, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet. 2013;382(9891):507–15.

    Article  Google Scholar 

  34. Qureshi AI, Ezzeddine MA, Nasar A, Suri MF, Kirmani JF, Hussein HM, et al. Prevalence of elevated blood pressure in 563,704 adult patients with stroke presenting to the ED in the United States. Am J Emerg Med. 2007;25(1):32–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shin HK, Nishimura M, Jones PB, Ay H, Boas DA, Moskowitz MA, et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke; J Cereb Circ. 2008;39(5):1548–55.

    Article  CAS  Google Scholar 

  36. Wallace JD, Levy LL. Blood pressure after stroke. JAMA. 1981;246(19):2177–80.

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez-Garcia JL, Botia E, de La Sierra A, Villanueva MA, Gonzalez-Spinola J. Significance of elevated blood pressure and its management on the short-term outcome of patients with acute ischemic stroke. Am J Hypertens. 2005;18(3):379–84.

    Article  PubMed  Google Scholar 

  38. European Stroke Organisation Executive C, Committee ESOW. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis. 2008;25(5):457–507.

    Article  Google Scholar 

  39. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke; J Cereb Circ. 2013;44(3):870–947.

    Article  Google Scholar 

  40. Liu S, Li C, Li T, Xiong J, Zhao X. Effects of early hypertension control after ischaemic stroke on the outcome: a meta-analysis. Cerebrovasc Dis. 2015;40(5–6):270–8.

    Article  PubMed  Google Scholar 

  41. Furie KL, Kasner SE, Adams RJ, Albers GW, Bush RL, Fagan SC, et al. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke; J Cereb Circ. 2011;42(1):227–76.

    Article  Google Scholar 

  42. Lackland DT, Elkind MS, D'Agostino R Sr, Dhamoon MS, Goff DC Jr, Higashida RT, et al. Inclusion of stroke in cardiovascular risk prediction instruments: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke; J Cereb Circ. 2012;43(7):1998–2027.

    Article  Google Scholar 

  43. Group PC. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet. 2001;358(9287):1033–41.

    Article  Google Scholar 

  44. Boan AD, Lackland DT, Ovbiagele B. Lowering of blood pressure for recurrent stroke prevention. Stroke; J Cereb Circ. 2014;45(8):2506–13.

    Article  Google Scholar 

  45. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke; J Cereb Circ. 2009;40(6):2244–50.

    Article  Google Scholar 

  46. Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res. 1998;39(1):89–105.

    Article  CAS  PubMed  Google Scholar 

  47. Dornas WC, Silva ME. Animal models for the study of arterial hypertension. J Biosci. 2011;36(4):731–7.

    Article  PubMed  Google Scholar 

  48. O’Collins VE, Donnan GA, Macleod MR, Howells DW. Hypertension and experimental stroke therapies. J Cerebral Blood Flow Metab: Off J Int Soc Cerebral Blood Flow Metab. 2013;33(8):1141–7.

    Article  Google Scholar 

  49. Trippodo NC, Frohlich ED. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res. 1981;48(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  50. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–93.

    Article  CAS  PubMed  Google Scholar 

  51. Leong XF, Ng CY, Jaarin K. Animal models in cardiovascular research: hypertension and atherosclerosis. Biomed Res Int. 2015;2015:528757.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yao H, Matsumoto T, Hirano M, Kuroki T, Tsutsumi T, Uchimura H, et al. Involvement of brain stem noradrenergic neurons in the development of hypertension in spontaneously hypertensive rats. Neurochem Res. 1989;14(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  53. Mori S, Kato M, Fujishima M. Impaired maze learning and cerebral glucose utilization in aged hypertensive rats. Hypertension. 1995;25(4 Pt 1):545–53.

    Article  CAS  PubMed  Google Scholar 

  54. Jacewicz M, Tanabe J, Pulsinelli WA. The CBF threshold and dynamics for focal cerebral infarction in spontaneously hypertensive rats. J Cereb Blood Flow Metab. 1992;12(3):359–70.

    Article  CAS  PubMed  Google Scholar 

  55. Kaplan B, Brint S, Tanabe J, Jacewicz M, Wang XJ, Pulsinelli W. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke; J Cereb Circ. 1991;22(8):1032–9.

    Article  CAS  Google Scholar 

  56. Nabika T, Nara Y, Ikeda K, Endo J, Yamori Y. Genetic heterogeneity of the spontaneously hypertensive rat. Hypertension. 1991;18(1):12–6.

    Article  CAS  PubMed  Google Scholar 

  57. St Lezin E, Simonet L, Pravenec M, Kurtz TW. Hypertensive strains and normotensive ‘control’ strains. How closely are they related? Hypertension. 1992;19(5):419–24.

    Article  CAS  PubMed  Google Scholar 

  58. Yao H, Nabika T. Standards and pitfalls of focal ischemia models in spontaneously hypertensive rats: with a systematic review of recent articles. J Transl Med. 2012;10:139.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Okamoto K, Yamamoto K, Morita N, Ohta Y, Chikugo T, Higashizawa T, et al. Establishment and use of the M strain of stroke-prone spontaneously hypertensive rat. J Hypertens Suppl: Off J Int Soc Hypertens. 1986;4(3):S21–4.

    CAS  Google Scholar 

  60. Nabika T, Cui Z, Masuda J. The stroke-prone spontaneously hypertensive rat: how good is it as a model for cerebrovascular diseases? Cell Mol Neurobiol. 2004;24(5):639–46.

    Article  PubMed  Google Scholar 

  61. Bailey EL, Smith C, Sudlow CL, Wardlaw JM. Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review. Int J Stroke: Off J Int Stroke Soc. 2011;6(5):434–44.

    Article  Google Scholar 

  62. Rapp JP. Dahl salt-susceptible and salt-resistant rats. A review. Hypertension. 1982;4(6):753–63.

    Article  CAS  PubMed  Google Scholar 

  63. Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene delivery reduces stroke-induced mortality rate in Dahl salt-sensitive rats. Hypertension. 1999;33(1 Pt 2):219–24.

    Article  CAS  PubMed  Google Scholar 

  64. von Lutterotti N, Camargo MJ, Campbell WG Jr, Mueller FB, Timmermans PB, Sealey JE, et al. Angiotensin II receptor antagonist delays renal damage and stroke in salt-loaded Dahl salt-sensitive rats. J Hypertens. 1992;10(9):949–57.

    Google Scholar 

  65. Iida S, Baumbach GL, Lavoie JL, Faraci FM, Sigmund CD, Heistad DD. Spontaneous stroke in a genetic model of hypertension in mice. Stroke; J Cereb Circ. 2005;36(6):1253–8.

    Article  Google Scholar 

  66. Wakisaka Y, Chu Y, Miller JD, Rosenberg GA, Heistad DD. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cerebral blood Flow Metab: Off J Int Soc Cerebral Blood Flow Metab. 2010;30(1):56–69.

    Article  CAS  Google Scholar 

  67. Bai YY, Peng XG, Wang LS, Li ZH, Wang YC, Lu CQ, et al. Bone marrow endothelial progenitor cell transplantation after ischemic stroke: an investigation into its possible mechanism. CNS Neurosci Ther. 2015;21(11):877–86.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002;90(3):284–8.

    Article  CAS  PubMed  Google Scholar 

  69. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89(1):E1–7.

    Article  CAS  PubMed  Google Scholar 

  70. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600.

    Article  PubMed  Google Scholar 

  71. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353(10):999–1007.

    Article  CAS  PubMed  Google Scholar 

  72. Oliveras A, Soler MJ, Martinez-Estrada OM, Vazquez S, Marco-Feliu D, Vila JS, et al. Endothelial progenitor cells are reduced in refractory hypertension. J Hum Hypertens. 2008;22(3):183–90.

    Article  CAS  PubMed  Google Scholar 

  73. Imbalzano E, Mandraffino G, Ceravolo R, Di Stefano R, Saitta A. Renal denervation rapidly restores circulating proangiogenic hematopoietic cells in patients affected by drug-resistant hypertension. Int J Cardiol. 2014;173(3):591–2.

    Article  CAS  PubMed  Google Scholar 

  74. MacEneaney OJ, DeSouza CA, Weil BR, Kushner EJ, Van Guilder GP, Mestek ML, et al. Prehypertension and endothelial progenitor cell function. J Hum Hypertens. 2011;25(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  75. Delva P, Degan M, Vallerio P, Arosio E, Minuz P, Amen G, et al. Endothelial progenitor cells in patients with essential hypertension. J Hypertens. 2007;25(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  76. Mandraffino G, Imbalzano E, Sardo MA, D’Ascola A, Mamone F, Lo Gullo A, et al. Circulating progenitor cells in hypertensive patients with different degrees of cardiovascular involvement. J Hum Hypertens. 2014;28(9):543–50.

    Article  CAS  PubMed  Google Scholar 

  77. Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012;110(4):624–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fadini GP, de Kreutzenberg SV, Coracina A, Baesso I, Agostini C, Tiengo A, et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur Heart J. 2006;27(18):2247–55.

    Article  CAS  PubMed  Google Scholar 

  79. Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cerebral Blood Flow Metab: Off J Int Soc Cerebral Blood Flow Metab. 2007;27(10):1684–91.

    Article  CAS  Google Scholar 

  80. Ikegame Y, Yamashita K, Nakashima S, Nomura Y, Yonezawa S, Asano Y, et al. Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke? Front Cell Neurosci. 2014;8:322.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci. 2012;322(1–2):241–9.

    Article  CAS  PubMed  Google Scholar 

  82. Kozak W, Kozak A, Johnson MH, Elewa HF, Fagan SC. Vascular protection with candesartan after experimental acute stroke in hypertensive rats: a dose-response study. J Pharmacol Exp Ther. 2008;326(3):773–82.

    Article  CAS  PubMed  Google Scholar 

  83. Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, et al. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cerebral Blood Flow Metab: Off J Int Soc Cerebral Blood Flow Metab. 2010;30(8):1412–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingjin Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, J., Gao, P. (2017). Hypertension and Stroke. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_8

Download citation

Publish with us

Policies and ethics