Skip to main content

Neuroprotective Strategies in Hemorrhagic Stroke

  • Chapter
  • First Online:
Translational Research in Stroke

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 1104 Accesses

Abstract

Hemorrhagic stroke is a devastating disease that represents 10–15% of all strokes in the United States, with high rates of morbidity and mortality. Primary injury to the brain is caused by disruption of the neuronal network, while secondary injury correlates with neuroinflammation, cellular lysis, and perihematomal edema. An approach targeting primary injury involves the evacuation of the intraparenchymal hematoma, which has shown mixed results depending on the invasiveness of the approach. Various neuroprotective strategies have been employed to prevent neuronal damage. Both intraparenchymal and subarachnoid hemorrhages are associated with significant neuroinflammation. Anti-inflammatory pharmacological interventions, such as heparin and glyburide, show significant promise in decreasing the extent of the delayed neurological damage. Other strategies have focused on targeting mitochondria and the final steps of neuronal apoptosis with minocycline, which has showed significant promise in all stroke types. Hemorrhagic stroke remains a devastating disease, and more neuroprotective strategies are needed to maximize the available therapeutic interventions and their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ASTROH:

Aneurysmal Subarachnoid Hemorrhage Trial Randomizing Heparin

BBB:

Blood-brain barrier

CLEAR:

Clot Lysis Evaluation of Accelerated Resolution of IVH

EGFR:

Epidermal growth factor receptor

ENRICH:

Early Minimally Invasive Removal of Intracerebral Hemorrhage

ET-1:

Endothelin-1

EVD:

External ventricular drain

GATA-1:

Erythroid transcription factor

ICAM-1:

Intercellular adhesion molecule-1

ICH:

Intracerebral hemorrhage

IVH:

Intraventricular hemorrhage

MAC:

Membrane attack complex

MACH:

Minocycline in Intracerebral Hemorrhage Patients

MISTIE:

Minimally Invasive Surgery Plus rt-PA for Intracerebral Hemorrhage Evacuation

MMPs:

Matrix metalloproteinases

MPO:

Myeloperoxidase

rt-PA:

Recombinant tissue plasminogen activator

SAH:

Subarachnoid hemorrhage

SLEUTH:

Stereotactic approaches associated with ultrasound-mediated lysis of the clot

STICH II:

Surgical Trial in Lobar Intracerebral Hemorrhage

STICH:

Surgical Trial in Intracerebral Hemorrhage

SUR1:

Sulfonylurea receptor-1

TNF-α:

Tumor necrosis factor-α

Trpm4:

Transient receptor potential melastatin 4

UFH:

Unfractionated heparin

References

  1. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Executive summary: heart disease and stroke statistics – 2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54.

    Article  Google Scholar 

  2. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.

    Article  Google Scholar 

  3. Kleindorfer DO, Khoury J, Moomaw CJ, Alwell K, Woo D, Flaherty ML, et al. Stroke incidence is decreasing in whites but not in blacks: a population-based estimate of temporal trends in stroke incidence from the Greater Cincinnati/Northern Kentucky Stroke Study. Stroke. 2010;41(7):1326–31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health. 2013;1(5):e259–81.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.

    Article  PubMed  Google Scholar 

  6. Aguilar MI, Freeman WD. Spontaneous intracerebral hemorrhage. Semin Neurol. 2010;30(5):555–64.

    Article  PubMed  Google Scholar 

  7. Flaherty ML. Anticoagulant-associated intracerebral hemorrhage. Semin Neurol. 2010;30(5):565–72.

    Article  PubMed  Google Scholar 

  8. Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382(9890):397–408.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zahuranec DB, Lisabeth LD, Sanchez BN, Smith MA, Brown DL, Garcia NM, et al. Intracerebral hemorrhage mortality is not changing despite declining incidence. Neurology. 2014;82(24):2180–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Koton S, Schneider AL, Rosamond WD, Shahar E, Sang Y, Gottesman RF, et al. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA. 2014;312(3):259–68.

    Article  CAS  PubMed  Google Scholar 

  11. Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365(9457):387–97.

    Article  PubMed  Google Scholar 

  12. Hu X, Tao C, Gan Q, Zheng J, Li H, You C. Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxidative Med Cell Longev. 2016;2016:3215391.

    Google Scholar 

  13. Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011;42(6):1781–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Auer LM, Deinsberger W, Niederkorn K, Gell G, Kleinert R, Schneider G, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: a randomized study. J Neurosurg. 1989;70(4):530–5.

    Article  CAS  PubMed  Google Scholar 

  15. Wang WZ, Jiang B, Liu HM, Li D, Lu CZ, Zhao YD, et al. Minimally invasive craniopuncture therapy vs. conservative treatment for spontaneous intracerebral hemorrhage: results from a randomized clinical trial in China. Int J Stroke. 2009;4(1):11–6.

    Article  PubMed  Google Scholar 

  16. Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44(3):627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanley DF, Thompson RE, Muschelli J, Rosenblum M, McBee N, Lane K, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15(12):1228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Newell DW, Shah MM, Wilcox R, Hansmann DR, Melnychuk E, Muschelli J, et al. Minimally invasive evacuation of spontaneous intracerebral hemorrhage using sonothrombolysis. J Neurosurg. 2011;115(3):592–601.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ziai WC, Torbey MT, Naff NJ, Williams MA, Bullock R, Marmarou A, et al. Frequency of sustained intracranial pressure elevation during treatment of severe intraventricular hemorrhage. Cerebrovasc Dis. 2009;27(4):403–10.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hanley DF. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke. 2009;40(4):1533–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Webb AJ, Ullman NL, Mann S, Muschelli J, Awad IA, Hanley DF. Resolution of intraventricular hemorrhage varies by ventricular region and dose of intraventricular thrombolytic: the Clot Lysis: Evaluating Accelerated Resolution of IVH (CLEAR IVH) program. Stroke. 2012;43(6):1666–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ziai WC, Tuhrim S, Lane K, McBee N, Lees K, Dawson J, et al. A multicenter, randomized, double-blinded, placebo-controlled phase III study of Clot Lysis Evaluation of Accelerated Resolution of Intraventricular Hemorrhage (CLEAR III). Int J Stroke. 2014;9(4):536–42.

    Article  PubMed  Google Scholar 

  23. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407(6805):802–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6.

    Article  CAS  PubMed  Google Scholar 

  25. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002;9(3):459–70.

    Article  CAS  PubMed  Google Scholar 

  26. Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett. 2000;283(3):230–2.

    Article  CAS  PubMed  Google Scholar 

  27. Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res. 2000;871(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  28. Gong Y, Hua Y, Keep RF, Hoff JT, Xi G. Intracerebral hemorrhage: effects of aging on brain edema and neurological deficits. Stroke. 2004;35(11):2571–5.

    Article  PubMed  Google Scholar 

  29. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang J, Dore S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain J Neurol. 2007;130(Pt 6):1643–52.

    Article  Google Scholar 

  31. Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908.

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Rogove AD, Tsirka AE, Tsirka SE. Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage. Ann Neurol. 2003;54(5):655–64.

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, Tsirka SE. Tuftsin fragment 1–3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke. 2005;36(3):613–8.

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen HX, O’Barr TJ, Anderson AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J Neurochem. 2007;102(3):900–12.

    Article  CAS  PubMed  Google Scholar 

  35. Joice SL, Mydeen F, Couraud PO, Weksler BB, Romero IA, Fraser PA, et al. Modulation of blood-brain barrier permeability by neutrophils: in vitro and in vivo studies. Brain Res. 2009;1298:13–23.

    Article  CAS  PubMed  Google Scholar 

  36. Hua Y, Wu J, Keep RF, Nakamura T, Hoff JT, Xi G. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery. 2006;58(3):542–50. discussion -50

    Article  PubMed  Google Scholar 

  37. Ma Q, Manaenko A, Khatibi NH, Chen W, Zhang JH, Tang J. Vascular adhesion protein-1 inhibition provides antiinflammatory protection after an intracerebral hemorrhagic stroke in mice. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2011;31(3):881–93.

    Article  CAS  Google Scholar 

  38. Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RF. Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. J Neurosurg. 2001;95(4):680–6.

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain J Neurol. 2005;128(Pt 7):1622–33.

    Article  Google Scholar 

  40. Morgan BP, Gasque P, Singhrao S, Piddlesden SJ. The role of complement in disorders of the nervous system. Immunopharmacology. 1997;38(1–2):43–50.

    Article  CAS  PubMed  Google Scholar 

  41. Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 2000;92(6):1016–22.

    Article  CAS  PubMed  Google Scholar 

  42. Hansch GM. The complement attack phase: control of lysis and non-lethal effects of C5b-9. Immunopharmacology. 1992;24(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  43. Holers VM. Phenotypes of complement knockouts. Immunopharmacology. 2000;49(1–2):125–31.

    Article  CAS  PubMed  Google Scholar 

  44. Ducruet AF, Zacharia BE, Hickman ZL, Grobelny BT, Yeh ML, Sosunov SA, et al. The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol. 2009;219(2):398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Komotar RJ, Starke RM, Arias EJ, Garrett MC, Otten ML, Merkow MB, et al. The complement cascade: new avenues in stroke therapy. Curr Vasc Pharmacol. 2009;7(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  46. Lindahl U, Lidholt K, Spillmann D, Kjellen L. More to “heparin” than anticoagulation. Thromb Res. 1994;75(1):1–32.

    Article  CAS  PubMed  Google Scholar 

  47. Simard JM, Aldrich EF, Schreibman D, James RF, Polifka A, Beaty N. Low-dose intravenous heparin infusion in patients with aneurysmal subarachnoid hemorrhage: a preliminary assessment. J Neurosurg. 2013;119(6):1611–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hirsh J, Anand SS, Halperin JL, Fuster V. Mechanism of action and pharmacology of unfractionated heparin. Arterioscler Thromb Vasc Biol. 2001;21(7):1094–6.

    Article  CAS  PubMed  Google Scholar 

  49. Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res. 2008;122(6):743–52.

    Article  CAS  PubMed  Google Scholar 

  50. Amiconi G, Zolla L, Vecchini P, Brunori M, Antonini E. The effect of macromolecular polyanions on the functional properties of human hemoglobin. Eur J Biochem/FEBS. 1977;76(2):339–43.

    Article  CAS  Google Scholar 

  51. Yokokawa K, Mandal AK, Kohno M, Horio T, Murakawa K, Yasunari K, et al. Heparin suppresses endothelin-1 action and production in spontaneously hypertensive rats. Am J Phys. 1992;263(5 Pt 2):R1035–41.

    CAS  Google Scholar 

  52. Kuwahara-Watanabe K, Hidai C, Ikeda H, Aoka Y, Ichikawa K, Iguchi N, et al. Heparin regulates transcription of endothelin-1 gene in endothelial cells. J Vasc Res. 2005;42(3):183–9.

    Article  CAS  PubMed  Google Scholar 

  53. Chansel D, Ciroldi M, Vandermeersch S, Jackson LF, Gomez AM, Henrion D, et al. Heparin binding EGF is necessary for vasospastic response to endothelin. FASEB J. 2006;20(11):1936–8.

    Article  CAS  PubMed  Google Scholar 

  54. Kalmes A, Vesti BR, Daum G, Abraham JA, Clowes AW. Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circ Res. 2000;87(2):92–8.

    Article  CAS  PubMed  Google Scholar 

  55. Simard JM, Tosun C, Ivanova S, Kurland DB, Hong C, Radecki L, et al. Heparin reduces neuroinflammation and transsynaptic neuronal apoptosis in a model of subarachnoid hemorrhage. Transl Stroke Res. 2012;3(Suppl 1):155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Siironen J, Juvela S, Varis J, Porras M, Poussa K, Ilveskero S, et al. No effect of enoxaparin on outcome of aneurysmal subarachnoid hemorrhage: a randomized, double-blind, placebo-controlled clinical trial. J Neurosurg. 2003;99(6):953–9.

    Article  CAS  PubMed  Google Scholar 

  57. Wurm G, Tomancok B, Nussbaumer K, Adelwohrer C, Holl K. Reduction of ischemic sequelae following spontaneous subarachnoid hemorrhage: a double-blind, randomized comparison of enoxaparin versus placebo. Clin Neurol Neurosurg. 2004;106(2):97–103.

    Article  PubMed  Google Scholar 

  58. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12(4):433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mehta RI, Tosun C, Ivanova S, Tsymbalyuk N, Famakin BM, Kwon MS, et al. Sur1-Trpm4 cation channel expression in human cerebral infarcts. J Neuropathol Exp Neurol. 2015;74(8):835–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Caffes N, Kurland DB, Gerzanich V, Simard JM. Glibenclamide for the treatment of ischemic and hemorrhagic stroke. Int J Mol Sci. 2015;16(3):4973–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tosun C, Kurland DB, Mehta R, Castellani RJ, de Jong JL, Kwon MS, et al. Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke. 2013;44(12):3522–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2009;29(2):317–30.

    Article  CAS  Google Scholar 

  63. Simard JM, Yurovsky V, Tsymbalyuk N, Melnichenko L, Ivanova S, Gerzanich V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke. 2009;40(2):604–9.

    Article  CAS  PubMed  Google Scholar 

  64. Sheth KN, Elm JJ, Molyneaux BJ, Hinson H, Beslow LA, Sze GK, et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15(11):1160–9.

    Article  CAS  PubMed  Google Scholar 

  65. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A. 1999;96(23):13496–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fink K, Zhu J, Namura S, Shimizu-Sasamata M, Endres M, Ma J, et al. Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1998;18(10):1071–6.

    Article  CAS  Google Scholar 

  67. Wu Z, Zou X, Zhu W, Mao Y, Chen L, Zhao F. Minocycline is effective in intracerebral hemorrhage by inhibition of apoptosis and autophagy. J Neurol Sci. 2016;371:88–95.

    Article  CAS  PubMed  Google Scholar 

  68. Li J, Chen J, Mo H, Chen J, Qian C, Yan F, et al. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury after subarachnoid hemorrhage. Mol Neurobiol. 2016;53(4):2668–78.

    Article  CAS  PubMed  Google Scholar 

  69. Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke. 2011;42(12):3587–93.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosures

RFJ is the national primary principal investigator for ASTROH. JMS is the national co-principal investigator for ASTROH. The authors declare no other conflicts of interest related to this work. RFJ is supported by grants from the Brain Aneurysm Foundation, MicroVention, Inc., Penumbra, Inc., and Medtronic, Inc. JMS is supported by grants from the National Institute of Neurological Disorders and Stroke (NS060801; NS061808) and the National Heart, Lung, and Blood Institute (HL082517).

Author Contributions

Conception and design: James, Williams, Khattar; review of the literature: Khattar, James; drafting of the manuscript: Khattar; critically revising the manuscript: all authors; supervision of project: Williams, James

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khattar, N.K., Williams, B.J., Ding, D., Marc Simard, J., James, R.F. (2017). Neuroprotective Strategies in Hemorrhagic Stroke. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_22

Download citation

Publish with us

Policies and ethics