Skip to main content

Immunology of Ischemic Stroke: Impact, Mechanisms, and Immunomodulatory Therapies

  • Chapter
  • First Online:
Translational Research in Stroke

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 1144 Accesses

Abstract

It is increasingly recognized that ischemic stroke is not only a brain disease characterized by brain cell death and damage but is also marked by the dysfunction of immune organs, as evidenced by systematic immune dysregulation prior to or after cerebral ischemia. For instance, with the prevalence of comorbidities such as diabetes, obesity, and hypertension, pre-existing chronic systematic inflammation has been considered an essential contributor that exacerbates stroke pathology. Conversely, mild immune responses induced by preconditioning have also been shown to protect against cerebral ischemic injury. Moreover, once stroke occurs, the injured brain evokes immune responses both in the brain and in the peripheral by communicating with the immune system via danger-associated molecular patterns or antigens, cytokines, and chemokines as well as via specific neural circuits, such as the sympathetic and parasympathetic nervous system. This bidirectional communication between the injured brain and the immune system determines the progression of acute infarct damage, long-term tissue repair, as well as postischemic systematic immunosuppression. In summary, the pre-existing immune responses as well as the immune responses evoked by cerebral ischemia play essential roles in shaping stroke outcomes. The therapies that target the immune responses, especially the immunomodulatory therapies, are promising treatments for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ANS:

Autonomic nervous system

APC:

Antigen processed cells

ApoE:

Apolipoprotein E

BBB:

Blood–brain barrier

CARDs:

Caspase activation and recruitment domains

CCL2:

Monocyte chemotactic protein-1

CCL3:

Macrophage inflammatory protein-α

CCL5:

Chemokine (C-C motif) ligand 5

CCR:

C-C chemokine receptor

CD:

Cluster of differentiation

CRH:

Corticotrophin-releasing hormone

CX3CR1:

C-X3-C motif chemokine receptor

DCs:

Dendritic cells

HDAC:

Histone deacetylase

HIFs:

Hypoxia inducible factors

HMGB1:

High-mobility group box-1

HPA:

Hypothalamic–pituitary–adrenal

ICAM:

Intercellular adhesion molecule

IL:

Interleukin

iNKTs:

Invariant natural killer T cells

LFA-1:

Lymphocyte function-associated antigen-1

LPS:

Lipopolysaccharide

MAP 2:

microtubule-associated protein 2

MBP:

Myelin basic protein

MCP-1:

Monocyte chemoattractant protein-1

MMP:

Metalloproteinase

MOG:

Myelin oligodendrocyte glycoprotein

nACH:

Nicotinic acetylcholine receptors

NLRs:

NOD-like receptors

NLRP1:

NLR family pyrin domain containing 1

NPCs:

Neural progenitor cells

OGD:

Oxygen-glucose deprivation

OPCs:

Oligodendrocyte precursor cells

PET:

Positron emission tomography

PNSN:

Parasympathetic nervous system

PVN:

Paraventricular nucleus

Rag1:

Recombination-activating gene 1

RAGE:

Receptor for advanced glycation end products

RANTES:

Regulated on activation, normal T cell expressed and secreted

S1P:

Sphingosine-1-phosphate

SCID:

Severe combined immunodeficiency mice

SDF1:

Stromal cell-derived factor 1

siRNA:

Small interfering RNA

SNS:

Sympathetic nervous system

Th:

T helper

TLR:

Toll-like receptor

tPA:

Tissue plasminogen activator

Tregs:

Regulatory T cells

VCAM:

Vascular adhesion molecule

vMIP-II:

Virus-derived macrophage inflammatory protein-II

References

  1. Murray KN, Buggey HF, Denes A, Allan SM. Systemic immune activation shapes stroke outcome. Mol Cell Neurosci. 2013;53:14–25.

    Article  CAS  PubMed  Google Scholar 

  2. An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6–24.

    Article  CAS  PubMed  Google Scholar 

  3. Abelev B, Abrahantes Quintana A, Adamova D, Adare AM, Aggarwal MM, Aglieri Rinella G, et al. J/psi polarization in pp collisions at radicals=7 TeV. Phys Rev Lett. 2012;108(8):082001.

    Article  CAS  PubMed  Google Scholar 

  4. Clayton TC, Thompson M, Meade TW. Recent respiratory infection and risk of cardiovascular disease: case-control study through a general practice database. Eur Heart J. 2008;29(1):96–103.

    Article  PubMed  Google Scholar 

  5. Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1999;19(8):819–34.

    Article  CAS  Google Scholar 

  6. Harms H, Reimnitz P, Bohner G, Werich T, Klingebiel R, Meisel C, et al. Influence of stroke localization on autonomic activation, immunodepression, and post-stroke infection. Cerebrovasc Dis. 2011;32(6):552–60.

    Article  CAS  PubMed  Google Scholar 

  7. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol. 2014;11:56.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2016.

    Google Scholar 

  9. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–10.

    Article  CAS  PubMed  Google Scholar 

  10. Meisel A, Smith CJ. Prevention of stroke-associated pneumonia: where next? Lancet. 2015;386(10006):1802–4.

    Article  PubMed  Google Scholar 

  11. Meisel A, Smith CJ. Stroke: preventive antibiotics for stroke-associated pneumonia. Nat Rev Neurol. 2015;11(12):672–3.

    Article  CAS  PubMed  Google Scholar 

  12. Westendorp WF, Nederkoorn PJ, Vermeij JD, Dijkgraaf MG, van de Beek D. Post-stroke infection: a systematic review and meta-analysis. BMC Neurol. 2011;11:110.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith CJ, Kishore AK, Vail A, Chamorro A, Garau J, Hopkins SJ, et al. Diagnosis of stroke-associated pneumonia: recommendations from the pneumonia in stroke consensus group. Stroke; J Cereb Circ. 2015;46(8):2335–40.

    Article  Google Scholar 

  14. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999;138(5 Pt 2):S419–20.

    Article  CAS  PubMed  Google Scholar 

  15. Kamari Y, Shaish A, Shemesh S, Vax E, Grosskopf I, Dotan S, et al. Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin-1alpha. Biochem Biophys Res Commun. 2011;405(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  16. Denes A, Drake C, Stordy J, Chamberlain J, McColl BW, Gram H, et al. Interleukin-1 mediates neuroinflammatory changes associated with diet-induced atherosclerosis. J Am Heart Assoc. 2012;1(3):e002006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Woo J, Lam CW, Kay R, Wong AH, Teoh R, Nicholls MG. The influence of hyperglycemia and diabetes mellitus on immediate and 3-month morbidity and mortality after acute stroke. Arch Neurol. 1990;47(11):1174–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kumari R, Willing LB, Krady JK, Vannucci SJ, Simpson IA. Impaired wound healing after cerebral hypoxia-ischemia in the diabetic mouse. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2007;27(4):710–8.

    Article  CAS  Google Scholar 

  19. Razinia T, Saver JL, Liebeskind DS, Ali LK, Buck B, Ovbiagele B. Body mass index and hospital discharge outcomes after ischemic stroke. Arch Neurol. 2007;64(3):388–91.

    Article  PubMed  Google Scholar 

  20. Kumari R, Willing LB, Patel SD, Krady JK, Zavadoski WJ, Gibbs EM, et al. The PPAR-gamma agonist, darglitazone, restores acute inflammatory responses to cerebral hypoxia-ischemia in the diabetic ob/ob mouse. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30(2):352–60.

    Article  CAS  Google Scholar 

  21. Rewell SS, Fernandez JA, Cox SF, Spratt NJ, Hogan L, Aleksoska E, et al. Inducing stroke in aged, hypertensive, diabetic rats. J Cerebral Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30(4):729–33.

    Article  Google Scholar 

  22. Pradillo JM, Denes A, Greenhalgh AD, Boutin H, Drake C, McColl BW, et al. Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2012;32(9):1810–9.

    Article  CAS  Google Scholar 

  23. Drake C, Boutin H, Jones MS, Denes A, McColl BW, Selvarajah JR, et al. Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain Behav Immun. 2011;25(6):1113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hindfelt B, Nilsson O. The prognosis of ischemic stroke in young adults. Acta Neurol Scand. 1977;55(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  25. Smeeth L, Thomas SL, Hall AJ, Hubbard R, Farrington P, Vallance P. Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med. 2004;351(25):2611–8.

    Article  CAS  PubMed  Google Scholar 

  26. Grau AJ, Buggle F, Heindl S, Steichen-Wiehn C, Banerjee T, Maiwald M, et al. Recent infection as a risk factor for cerebrovascular ischemia. Stroke: J Cereb Circ. 1995;26(3):373–9.

    Article  CAS  Google Scholar 

  27. Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke. Nat Rev Neurol. 2010;6(12):681–94.

    Article  PubMed  Google Scholar 

  28. Paganini-Hill A, Lozano E, Fischberg G, Perez Barreto M, Rajamani K, Ameriso SF, et al. Infection and risk of ischemic stroke: differences among stroke subtypes. Stroke: J Cereb Circ. 2003;34(2):452–7.

    Article  CAS  Google Scholar 

  29. McColl BW, Rothwell NJ, Allan SM. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci: Off J Soc Neurosci. 2007;27(16):4403–12.

    Article  CAS  Google Scholar 

  30. Muhammad S, Haasbach E, Kotchourko M, Strigli A, Krenz A, Ridder DA, et al. Influenza virus infection aggravates stroke outcome. Stroke: J Cereb Circ. 2011;42(3):783–91.

    Article  CAS  Google Scholar 

  31. Denes A, Humphreys N, Lane TE, Grencis R, Rothwell N. Chronic systemic infection exacerbates ischemic brain damage via a CCL5 (regulated on activation, normal T-cell expressed and secreted)-mediated proinflammatory response in mice. J Neurosci: Off J Soc Neurosci. 2010;30(30):10086–95.

    Article  CAS  Google Scholar 

  32. Patel JV, Abraheem A, Dotsenko O, Creamer J, Gunning M, Hughes EA, et al. Circulating serum adiponectin levels in patients with coronary artery disease: relationship to atherosclerotic burden and cardiac function. J Intern Med. 2008;264(6):593–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ritter L, Davidson L, Henry M, Davis-Gorman G, Morrison H, Frye JB, et al. Exaggerated neutrophil-mediated reperfusion injury after ischemic stroke in a rodent model of type 2 diabetes. Microcirculation. 2011;18(7):552–61.

    Article  CAS  PubMed  Google Scholar 

  34. Buraczynska K, Luchowski P, Wojczal J, Ksiazek A, Stelmasiak Z. Monocyte chemoattractant protein (MCP-1) A-2518G gene polymorphism in stroke patients with different comorbidities. Clin Biochem. 2010;43(18):1421–6.

    Article  CAS  PubMed  Google Scholar 

  35. Denes A, Ferenczi S, Kovacs KJ. Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size. J Neuroinflammation. 2011;8:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamagata K. Pathological alterations of astrocytes in stroke-prone spontaneously hypertensive rats under ischemic conditions. Neurochem Int. 2012;60(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  37. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115(12):3378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blann AD, Tse W, Maxwell SJ, Waite MA. Increased levels of the soluble adhesion molecule E-selectin in essential hypertension. J Hypertens. 1994;12(8):925–8.

    Article  CAS  PubMed  Google Scholar 

  39. Dansky HM, Barlow CB, Lominska C, Sikes JL, Kao C, Weinsaft J, et al. Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol. 2001;21(10):1662–7.

    Article  CAS  PubMed  Google Scholar 

  40. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest. 2001;107(10):1255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fotis L, Agrogiannis G, Vlachos IS, Pantopoulou A, Margoni A, Kostaki M, et al. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 at the early stages of atherosclerosis in a rat model. In Vivo. 2012;26(2):243–50.

    CAS  PubMed  Google Scholar 

  42. Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med. 2006;203(5):1273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kurukulasuriya LR, Govindarajan G, Sowers J. Stroke prevention in diabetes and obesity. Expert Rev Cardiovasc Ther. 2006;4(4):487–502.

    Article  CAS  PubMed  Google Scholar 

  44. Singer G, Granger DN. Inflammatory responses underlying the microvascular dysfunction associated with obesity and insulin resistance. Microcirculation. 2007;14(4-5):375–87.

    Article  CAS  PubMed  Google Scholar 

  45. McColl BW, Rose N, Robson FH, Rothwell NJ, Lawrence CB. Increased brain microvascular MMP-9 and incidence of haemorrhagic transformation in obese mice after experimental stroke. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30(2):267–72.

    Article  CAS  Google Scholar 

  46. Terao S, Yilmaz G, Stokes KY, Ishikawa M, Kawase T, Granger DN. Inflammatory and injury responses to ischemic stroke in obese mice. Stroke: J Cereb Circ. 2008;39(3):943–50.

    Article  Google Scholar 

  47. Stevens SL, Leung PY, Vartanian KB, Gopalan B, Yang T, Simon RP, et al. Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci: Off J Soc Neurosci. 2011;31(23):8456–63.

    Article  CAS  Google Scholar 

  48. Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30(4):744–56.

    Article  CAS  Google Scholar 

  49. Shin JA, Park EM, Choi JS, Seo SM, Kang JL, Lee KE, et al. Ischemic preconditioning-induced neuroprotection is associated with differential expression of IL-1beta and IL-1 receptor antagonist in the ischemic cortex. J Neuroimmunol. 2009;217(1–2):14–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lynch AM, Walsh C, Delaney A, Nolan Y, Campbell VA, Lynch MA. Lipopolysaccharide-induced increase in signalling in hippocampus is abrogated by IL-10 – a role for IL-1 beta? J Neurochem. 2004;88(3):635–46.

    Article  CAS  PubMed  Google Scholar 

  51. Lastres-Becker I, Cartmell T, Molina-Holgado F. Endotoxin preconditioning protects neurones from in vitro ischemia: role of endogenous IL-1beta and TNF-alpha. J Neuroimmunol. 2006;173(1-2):108–16.

    Article  CAS  PubMed  Google Scholar 

  52. Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, et al. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci: Official J Soc Neurosci. 2007;27(27):7083–93.

    Article  CAS  Google Scholar 

  53. Huang SS, Wei FC, Hung LM. Ischemic preconditioning attenuates postischemic leukocyte – endothelial cell interactions: role of nitric oxide and protein kinase C. Circ J: Off J Jpn Circ Soc. 2006;70(8):1070–5.

    Article  CAS  Google Scholar 

  54. Wei D, Ren C, Chen X, Zhao H. The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS One. 2012;7(2):e30892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Planas AM, Gomez-Choco M, Urra X, Gorina R, Caballero M, Chamorro A. Brain-derived antigens in lymphoid tissue of patients with acute stroke. J Immunol. 2012;188(5):2156–63.

    Article  CAS  PubMed  Google Scholar 

  56. Famakin BM. The immune response to acute focal cerebral ischemia and associated post-stroke Immunodepression: a focused review. Aging Dis. 2014;5(5):307–26.

    PubMed  PubMed Central  Google Scholar 

  57. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, et al. The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci: Off J Soc Neurosci. 2008;28(46):12023–31.

    Article  CAS  Google Scholar 

  58. Kim JB, Lim CM, Yu YM, Lee JK. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J Neurosci Res. 2008;86(5):1125–31.

    Article  CAS  PubMed  Google Scholar 

  59. Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci: Off J Soc Neurosci. 2006;26(24):6413–21.

    Article  CAS  Google Scholar 

  60. Yang QW, Lu FL, Zhou Y, Wang L, Zhong Q, Lin S, et al. HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent toll-like receptor 4 signaling. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2011;31(2):593–605.

    Article  CAS  Google Scholar 

  61. Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M, Pedata F. ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int. 2005;47(6):442–8.

    Article  CAS  PubMed  Google Scholar 

  62. Bune LT, Thaning P, Johansson PI, Bochsen L, Rosenmeier JB. Effects of nucleotides and nucleosides on coagulation. Blood Coagul Fibrinolysis: Int J Haemost Thromb. 2010;21(5):436–41.

    Article  CAS  Google Scholar 

  63. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, et al. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol. 2004;63(7):686–99.

    Article  CAS  PubMed  Google Scholar 

  64. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, et al. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem. 2009;284(27):18143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wixey JA, Reinebrant HE, Carty ML, Buller KM. Delayed P2X4R expression after hypoxia-ischemia is associated with microglia in the immature rat brain. J Neuroimmunol. 2009;212(1–2):35–43.

    Article  CAS  PubMed  Google Scholar 

  66. Cavaliere F, Florenzano F, Amadio S, Fusco FR, Viscomi MT, D’Ambrosi N, et al. Up-regulation of P2X2, P2X4 receptor and ischemic cell death: prevention by P2 antagonists. Neuroscience. 2003;120(1):85–98.

    Article  CAS  PubMed  Google Scholar 

  67. Chu K, Yin B, Wang J, Peng G, Liang H, Xu Z, et al. Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus. J Neuroinflammation. 2012;9:69.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li F, Wang L, Li JW, Gong M, He L, Feng R, et al. Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4. BMC Neurosci. 2011;12:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang M, Li W, Niu G, Leak RK, Chen J, Zhang F. ATP induces mild hypothermia in rats but has a strikingly detrimental impact on focal cerebral ischemia. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2013;33(1):e1.

    Article  CAS  Google Scholar 

  70. Foerch C, Singer OC, Neumann-Haefelin T, du Mesnil de Rochemont R, Steinmetz H, Sitzer M. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol. 2005;62(7):1130–4.

    Article  PubMed  Google Scholar 

  71. Gonzalez-Garcia S, Gonzalez-Quevedo A, Fernandez-Concepcion O, Pena-Sanchez M, Menendez-Sainz C, Hernandez-Diaz Z, et al. Short-term prognostic value of serum neuron specific enolase and S100B in acute stroke patients. Clin Biochem. 2012;45(16–17):1302–7.

    Article  CAS  PubMed  Google Scholar 

  72. Mori T, Tan J, Arendash GW, Koyama N, Nojima Y, Town T. Overexpression of human S100B exacerbates brain damage and periinfarct gliosis after permanent focal ischemia. Stroke: J Cereb Circ. 2008;39(7):2114–21.

    Article  CAS  Google Scholar 

  73. Adami C, Bianchi R, Pula G, Donato R. S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain. Biochim Biophys Acta. 2004;1742(1–3):169–77.

    Article  CAS  PubMed  Google Scholar 

  74. Bianchi R, Giambanco I, Donato R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging. 2010;31(4):665–77.

    Article  CAS  PubMed  Google Scholar 

  75. Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem. 2011;286(9):7214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hayakawa K, Pham LD, Arai K, Lo EH. High-mobility group box 1: an amplifier of stem and progenitor cell activity after stroke. Acta Neurochir Suppl. 2013;118:31–8.

    PubMed  PubMed Central  Google Scholar 

  77. Qiu J, Xu J, Zheng Y, Wei Y, Zhu X, Lo EH, et al. High-mobility group box 1 promotes metalloproteinase-9 upregulation through toll-like receptor 4 after cerebral ischemia. Stroke: J Cereb Circ. 2010;41(9):2077–82.

    Article  CAS  Google Scholar 

  78. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, et al. Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A. 2007;104(34):13798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hyakkoku K, Hamanaka J, Tsuruma K, Shimazawa M, Tanaka H, Uematsu S, et al. Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience. 2010;171(1):258–67.

    Article  CAS  PubMed  Google Scholar 

  80. Barr TL, Conley Y, Ding J, Dillman A, Warach S, Singleton A, et al. Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology. 2010;75(11):1009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang QW, Li JC, Lu FL, Wen AQ, Xiang J, Zhang LL, et al. Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2008;28(9):1588–96.

    Article  CAS  Google Scholar 

  82. Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD. Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2009;29(3):534–44.

    Article  CAS  Google Scholar 

  83. Savage CD, Lopez-Castejon G, Denes A, Brough D. NLRP3-Inflammasome activating DAMPs stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury. Front Immunol. 2012;3:288.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol. 2012;3:414.

    PubMed  Google Scholar 

  85. Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA. Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem. 2003;49(10):1752–62.

    Article  CAS  PubMed  Google Scholar 

  86. Bornstein NM, Aronovich B, Korczyn AD, Shavit S, Michaelson DM, Chapman J. Antibodies to brain antigens following stroke. Neurology. 2001;56(4):529–30.

    Article  CAS  PubMed  Google Scholar 

  87. Walz W, Ilschner S, Ohlemeyer C, Banati R, Kettenmann H. Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neurosci: Off J Soc Neurosci. 1993;13(10):4403–11.

    CAS  Google Scholar 

  88. Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke: J Cereb Circ. 2000;31(7):1735–43.

    Article  CAS  Google Scholar 

  89. Luheshi NM, Kovacs KJ, Lopez-Castejon G, Brough D, Denes A. Interleukin-1alpha expression precedes IL-1beta after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J Neuroinflammation. 2011;8:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci: Off J Soc Neurosci. 2001;21(15):5528–34.

    CAS  Google Scholar 

  91. Sergeeva SP, Erofeeva LM, Gul’tiaev MM. IL-1beta, IL-10, INF-gamma, TNF-alpha, S100beta, AMA-M2 and cell immune response in stroke. Patologicheskaia fiziologiia i eksperimental’naia terapiia, 5. 2011;1:41.

    Google Scholar 

  92. Ivacko J, Szaflarski J, Malinak C, Flory C, Warren JS, Silverstein FS. Hypoxic-ischemic injury induces monocyte chemoattractant protein-1 expression in neonatal rat brain. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1997;17(7):759–70.

    Article  CAS  Google Scholar 

  93. Zaremba J, Ilkowski J, Losy J. Serial measurements of levels of the chemokines CCL2, CCL3 and CCL5 in serum of patients with acute ischaemic stroke. Folia Neuropathol Assoc Pol Neuropathol Med Res Centre, Pol Acad Sci. 2006;44(4):282–9.

    CAS  Google Scholar 

  94. Yamagami S, Tamura M, Hayashi M, Endo N, Tanabe H, Katsuura Y, et al. Differential production of MCP-1 and cytokine-induced neutrophil chemoattractant in the ischemic brain after transient focal ischemia in rats. J Leukoc Biol. 1999;65(6):744–9.

    CAS  PubMed  Google Scholar 

  95. Schilling M, Strecker JK, Ringelstein EB, Schabitz WR, Kiefer R. The role of CC chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice. Brain Res. 2009;1289:79–84.

    Article  CAS  PubMed  Google Scholar 

  96. Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, et al. Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2003;23(6):748–55.

    Article  CAS  Google Scholar 

  97. Cowell RM, Xu H, Galasso JM, Silverstein FS. Hypoxic-ischemic injury induces macrophage inflammatory protein-1alpha expression in immature rat brain. Stroke: J Cereb Circ. 2002;33(3):795–801.

    Article  CAS  Google Scholar 

  98. Takami S, Nishikawa H, Minami M, Nishiyori A, Sato M, Akaike A, et al. Induction of macrophage inflammatory protein MIP-1alpha mRNA on glial cells after focal cerebral ischemia in the rat. Neurosci Lett. 1997;227(3):173–6.

    Article  CAS  PubMed  Google Scholar 

  99. Takami S, Minami M, Nagata I, Namura S, Satoh M. Chemokine receptor antagonist peptide, viral MIP-II, protects the brain against focal cerebral ischemia in mice. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2001;21(12):1430–5.

    Article  CAS  Google Scholar 

  100. Terao S, Yilmaz G, Stokes KY, Russell J, Ishikawa M, Kawase T, et al. Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke: J Cereb Circ. 2008;39(9):2560–70.

    Article  CAS  Google Scholar 

  101. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol. 2004;63(1):84–96.

    Article  CAS  PubMed  Google Scholar 

  102. Wang X, Li C, Chen Y, Hao Y, Zhou W, Chen C, et al. Hypoxia enhances CXCR4 expression favoring microglia migration via HIF-1alpha activation. Biochem Biophys Res Commun. 2008;371(2):283–8.

    Article  CAS  PubMed  Google Scholar 

  103. Denes A, Ferenczi S, Halasz J, Kornyei Z, Kovacs KJ. Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2008;28(10):1707–21.

    Article  CAS  Google Scholar 

  104. Villa P, Triulzi S, Cavalieri B, Di Bitondo R, Bertini R, Barbera S, et al. The interleukin-8 (IL-8/CXCL8) receptor inhibitor reparixin improves neurological deficits and reduces long-term inflammation in permanent and transient cerebral ischemia in rats. Mol Med. 2007;13(3–4):125–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, del Zoppo GJ. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke: J Cereb Circ. 1994;25(1):202–11.

    Article  CAS  Google Scholar 

  106. Cha JK, Jeong MH, Kim EK, Lim YJ, Ha BR, Kim SH, et al. Surface expression of P-selectin on platelets is related with clinical worsening in acute ischemic stroke. J Korean Med Sci. 2002;17(6):811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Connolly ES Jr, Winfree CJ, Prestigiacomo CJ, Kim SC, Choudhri TF, Hoh BL, et al. Exacerbation of cerebral injury in mice that express the P-selectin gene: identification of P-selectin blockade as a new target for the treatment of stroke. Circ Res. 1997;81(3):304–10.

    Article  CAS  PubMed  Google Scholar 

  108. Jin AY, Tuor UI, Rushforth D, Kaur J, Muller RN, Petterson JL, et al. Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke. BMC Neurosci. 2010;11:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Huang J, Kim LJ, Mealey R, Marsh HC Jr, Zhang Y, Tenner AJ, et al. Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science. 1999;285(5427):595–9.

    Article  CAS  PubMed  Google Scholar 

  110. Lehmberg J, Beck J, Baethmann A, Uhl E. Effect of P-selectin inhibition on leukocyte-endothelium interaction and survival after global cerebral ischemia. J Neurol. 2006;253(3):357–63.

    Article  CAS  PubMed  Google Scholar 

  111. Shyu KG, Chang H, Lin CC. Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. J Neurol. 1997;244(2):90–3.

    Article  CAS  PubMed  Google Scholar 

  112. Chen Y, Ruetzler C, Pandipati S, Spatz M, McCarron RM, Becker K, et al. Mucosal tolerance to E-selectin provides cell-mediated protection against ischemic brain injury. Proc Natl Acad Sci U S A. 2003;100(25):15107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yenari MA, Sun GH, Kunis DM, Onley D, Vexler V. L-selectin inhibition does not reduce injury in a rabbit model of transient focal cerebral ischemia. Neurol Res. 2001;23(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  114. Fassbender K, Mossner R, Motsch L, Kischka U, Grau A, Hennerici M. Circulating selectin- and immunoglobulin-type adhesion molecules in acute ischemic stroke. Stroke: J Cereb Circ. 1995;26(8):1361–4.

    Article  CAS  Google Scholar 

  115. Frijns CJ, Kappelle LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke: J Cereb Circ. 2002;33(8):2115–22.

    Article  CAS  Google Scholar 

  116. Zhang RL, Chopp M, Jiang N, Tang WX, Prostak J, Manning AM, et al. Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke: J Cereb Circ. 1995;26(8):1438–42. discussion 43

    Article  CAS  Google Scholar 

  117. Connolly ES Jr, Winfree CJ, Springer TA, Naka Y, Liao H, Yan SD, et al. Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest. 1996;97(1):209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bitsch A, Klene W, Murtada L, Prange H, Rieckmann P. A longitudinal prospective study of soluble adhesion molecules in acute stroke. Stroke: J Cereb Circ. 1998;29(10):2129–35.

    Article  CAS  Google Scholar 

  119. Lindsberg PJ, Carpen O, Paetau A, Karjalainen-Lindsberg ML, Kaste M. Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation. 1996;94(5):939–45.

    Article  CAS  PubMed  Google Scholar 

  120. Enlimomab Acute Stroke Trial I. Use of anti-ICAM-1 therapy in ischemic stroke: results of the enlimomab acute stroke trial. Neurology. 2001;57(8):1428–34.

    Article  Google Scholar 

  121. Matsuo Y, Onodera H, Shiga Y, Shozuhara H, Ninomiya M, Kihara T, et al. Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat. Brain Res. 1994;656(2):344–52.

    Article  CAS  PubMed  Google Scholar 

  122. Justicia C, Martin A, Rojas S, Gironella M, Cervera A, Panes J, et al. Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2006;26(3):421–32.

    Article  CAS  Google Scholar 

  123. Kim JS, Chopp M, Chen H, Levine SR, Carey JL, Welch KM. Adhesive glycoproteins CD11a and CD18 are upregulated in the leukocytes from patients with ischemic stroke and transient ischemic attacks. J Neurol Sci. 1995;128(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  124. Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN. Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Phys Heart Circ Phys. 2004;287(6):H2555–60.

    CAS  Google Scholar 

  125. Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke: J Cereb Circ. 1994;25(4):869–75. discussion 75–6

    Article  CAS  Google Scholar 

  126. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2003;183(1):25–33.

    Article  PubMed  Google Scholar 

  127. Schilling M, Besselmann M, Muller M, Strecker JK, Ringelstein EB, Kiefer R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2005;196(2):290–7.

    Article  CAS  PubMed  Google Scholar 

  128. Breckwoldt MO, Chen JW, Stangenberg L, Aikawa E, Rodriguez E, Qiu S, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A. 2008;105(47):18584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke: J Cereb Circ. 2012;43(11):3063–70.

    Article  CAS  Google Scholar 

  130. Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, et al. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun. 2014;40:131–42.

    Article  CAS  PubMed  Google Scholar 

  131. Li D, Wang C, Yao Y, Chen L, Liu G, Zhang R, et al. mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. FASEB J: Off Publ Fed Am Soc Exp Biol. 2016;30:3388.

    Article  CAS  Google Scholar 

  132. Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke: J Cereb Circ. 2016;47(2):498–504.

    Article  CAS  Google Scholar 

  133. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87(5):779–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Price CJ, Menon DK, Peters AM, Ballinger JR, Barber RW, Balan KK, et al. Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke: J Cereb Circ. 2004;35(7):1659–64.

    Article  CAS  Google Scholar 

  135. Kim J, Song TJ, Park JH, Lee HS, Nam CM, Nam HS, et al. Different prognostic value of white blood cell subtypes in patients with acute cerebral infarction. Atherosclerosis. 2012;222(2):464–7.

    Article  CAS  PubMed  Google Scholar 

  136. Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA, et al. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARgamma agonist rosiglitazone. Stroke: J Cereb Circ. 2013;44(12):3498–508.

    Article  CAS  Google Scholar 

  137. Kostulas N, Li HL, Xiao BG, Huang YM, Kostulas V, Link H. Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat. Stroke: J Cereb Circ. 2002;33(4):1129–34.

    Article  Google Scholar 

  138. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke: J Cereb Circ. 2009;40(5):1849–57.

    Article  Google Scholar 

  139. Felger JC, Abe T, Kaunzner UW, Gottfried-Blackmore A, Gal-Toth J, McEwen BS, et al. Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav Immun. 2010;24(5):724–37.

    Article  CAS  PubMed  Google Scholar 

  140. Campanella M, Sciorati C, Tarozzo G, Beltramo M. Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke: J Cereb Circ. 2002;33(2):586–92.

    Article  Google Scholar 

  141. Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, et al. Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30(7):1306–17.

    Article  CAS  Google Scholar 

  142. Becker K, Kindrick D, Relton J, Harlan J, Winn R. Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke: J Cereb Circ. 2001;32(1):206–11.

    Article  CAS  Google Scholar 

  143. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, et al. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2007;27(11):1798–805.

    Article  CAS  Google Scholar 

  144. Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, et al. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood. 2010;115(18):3835–42.

    Article  CAS  PubMed  Google Scholar 

  145. Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134:704–20.

    Article  PubMed  Google Scholar 

  146. Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006;113(17):2105–12.

    Article  PubMed  Google Scholar 

  147. Wang J, Yu L, Jiang C, Fu X, Liu X, Wang M, et al. Cerebral ischemia increases bone marrow CD4+CD25+FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system. Brain Behav Immun. 2015;43:172–83.

    Article  PubMed  CAS  Google Scholar 

  148. Liesz A, Zhou W, Na SY, Hammerling GJ, Garbi N, Karcher S, et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci: Off J Soc Neurosci. 2013;33(44):17350–62.

    Article  CAS  Google Scholar 

  149. Na SY, Mracsko E, Liesz A, Hunig T, Veltkamp R. Amplification of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice. Stroke: J Cereb Circ. 2015;46(1):212–20.

    Article  CAS  Google Scholar 

  150. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol. 2013;74(3):458–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  152. Gee JM, Kalil A, Thullbery M, Becker KJ. Induction of immunologic tolerance to myelin basic protein prevents central nervous system autoimmunity and improves outcome after stroke. Stroke: J Cereb Circ. 2008;39(5):1575–82.

    Article  Google Scholar 

  153. Ishibashi S, Maric D, Mou Y, Ohtani R, Ruetzler C, Hallenbeck JM. Mucosal tolerance to E-selectin promotes the survival of newly generated neuroblasts via regulatory T-cell induction after stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2009;29(3):606–20.

    Article  CAS  Google Scholar 

  154. Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Gobel K, Schuhmann MK, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis. 2011;26(1):87–90.

    Article  PubMed  CAS  Google Scholar 

  156. Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci: Off J Soc Neurosci. 2011;31(23):8556–63.

    Article  CAS  Google Scholar 

  157. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47.

    Article  CAS  PubMed  Google Scholar 

  158. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.

    Article  CAS  PubMed  Google Scholar 

  159. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009;158(3):1021–9.

    Article  CAS  PubMed  Google Scholar 

  160. Liu Z, Fan Y, Won SJ, Neumann M, Hu D, Zhou L, et al. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke: J Cereb Circ. 2007;38(1):146–52.

    Article  CAS  Google Scholar 

  161. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101(52):18117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Unoki N, Murakami T, Nishijima K, Ogino K, van Rooijen N, Yoshimura N. SDF-1/CXCR4 contributes to the activation of tip cells and microglia in retinal angiogenesis. Invest Ophthalmol Vis Sci. 2010;51(7):3362–71.

    Article  PubMed  Google Scholar 

  163. Walther M, Kuklinski S, Pesheva P, Guntinas-Lichius O, Angelov DN, Neiss WF, et al. Galectin-3 is upregulated in microglial cells in response to ischemic brain lesions, but not to facial nerve axotomy. J Neurosci Res. 2000;61(4):430–5.

    Article  CAS  PubMed  Google Scholar 

  164. Dzietko M, Derugin N, Wendland MF, Vexler ZS, Ferriero DM. Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res. 2013;4(2):189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106(7):829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee TH, Avraham H, Lee SH, Avraham S. Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells. J Biol Chem. 2002;277(12):10445–51.

    Article  CAS  PubMed  Google Scholar 

  167. Horiuchi T, Weller PF. Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol. 1997;17(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  168. Cui X, Chopp M, Zacharek A, Cui C, Yan T, Ning R, et al. D-4F decreases white matter damage after stroke in mice. Stroke: J Cereb Circ. 2016;47(1):214–20.

    Article  CAS  Google Scholar 

  169. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Suenaga J, Hu X, Pu H, Shi Y, Hassan SH, Xu M, et al. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp Neurol. 2015;272:109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang J, Xia J, Zhang F, Shi Y, Wu Y, Pu H, et al. Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Sci Rep. 2015;5:9621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3beta/PTEN/Akt axis. Proc Natl Acad Sci U S A. 2015;112(9):2853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu XS, Chopp M, Kassis H, Jia LF, Hozeska-Solgot A, Zhang RL, et al. Valproic acid increases white matter repair and neurogenesis after stroke. Neuroscience. 2012;220:313–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Krugers HJ, Knollema S, Kemper RH, Ter Horst GJ, Korf J. Down-regulation of the hypothalamo-pituitary-adrenal axis reduces brain damage and number of seizures following hypoxia/ischaemia in rats. Brain Res. 1995;690(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  175. Haddad JJ, Saade NE, Safieh-Garabedian B. Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol. 2002;133(1–2):1–19.

    Article  CAS  PubMed  Google Scholar 

  176. Brambilla R, Couch Y, Lambertsen KL. The effect of stroke on immune function. Mol Cell Neurosci. 2013;53:26–33.

    Article  CAS  PubMed  Google Scholar 

  177. Ajmo CT Jr, Collier LA, Leonardo CC, Hall AA, Green SM, Womble TA, et al. Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol. 2009;218(1):47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ajmo CT Jr, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, et al. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res. 2008;86(10):2227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dirnagl U, Klehmet J, Braun JS, Harms H, Meisel C, Ziemssen T, et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke: J Cereb Circ. 2007;38(2 Suppl):770–3.

    Article  Google Scholar 

  180. Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Prass K, Braun JS, Dirnagl U, Meisel C, Meisel A. Stroke propagates bacterial aspiration to pneumonia in a model of cerebral ischemia. Stroke: J Cereb Circ. 2006;37(10):2607–12.

    Article  Google Scholar 

  182. Wong CH, Jenne CN, Lee WY, Leger C, Kubes P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science. 2011;334(6052):101–5.

    Article  CAS  PubMed  Google Scholar 

  183. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62.

    Article  CAS  PubMed  Google Scholar 

  184. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.

    Article  CAS  PubMed  Google Scholar 

  185. Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ay I, Sorensen AG, Ay H. Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: an unlikely role for cerebral blood flow. Brain Res. 2011;1392:110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Liu AF, Zhao FB, Wang J, Lu YF, Tian J, Zhao Y, et al. Effects of vagus nerve stimulation on cognitive functioning in rats with cerebral ischemia reperfusion. J Transl Med. 2016;14(1):101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Dawson J, Pierce D, Dixit A, Kimberley TJ, Robertson M, Tarver B, et al. Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke: J Cereb Circ. 2016;47(1):143–50.

    Article  Google Scholar 

  189. Jiang Y, Li L, Ma J, Zhang L, Niu F, Feng T, et al. Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model. Neurochem Int. 2016;97:73.

    Article  CAS  PubMed  Google Scholar 

  190. Xiang YX, Wang WX, Xue Z, Zhu L, Wang SB, Sun ZH. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-inflammatory mechanism. Neural Regen Res. 2015;10(4):576–82.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C. miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem. 2015;134(1):173–81.

    Article  CAS  PubMed  Google Scholar 

  192. Lee H, Park JW, Kim SP, Lo EH, Lee SR. Doxycycline inhibits matrix metalloproteinase-9 and laminin degradation after transient global cerebral ischemia. Neurobiol Dis. 2009;34(2):189–98.

    Article  CAS  PubMed  Google Scholar 

  193. Harms H, Prass K, Meisel C, Klehmet J, Rogge W, Drenckhahn C, et al. Preventive antibacterial therapy in acute ischemic stroke: a randomized controlled trial. PLoS One. 2008;3(5):e2158.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, et al. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology. 2007;69(14):1404–10.

    Article  CAS  PubMed  Google Scholar 

  195. Fagan SC, Waller JL, Nichols FT, Edwards DJ, Pettigrew LC, Clark WM, et al. Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke: J Cereb Circ. 2010;41(10):2283–7.

    Article  CAS  Google Scholar 

  196. Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J, et al. Intravenous minocycline in acute stroke: a randomized, controlled pilot study and meta-analysis. Stroke: J Cereb Circ. 2013;44(9):2493–9.

    Article  CAS  Google Scholar 

  197. Emsley HC, Smith CJ, Georgiou RF, Vail A, Hopkins SJ, Rothwell NJ, et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry. 2005;76(10):1366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhang RL, Chopp M, Li Y, Zaloga C, Jiang N, Jones ML, et al. Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology. 1994;44(9):1747–51.

    Article  CAS  PubMed  Google Scholar 

  199. Schabitz WR, Dirnagl U. Are we ready to translate T-cell transmigration in stroke? Stroke: J Cereb Circ. 2014;45(6):1610–1.

    Article  Google Scholar 

  200. Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol. 2011;69(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  201. Zheng SL, Wei SW, Wang XY, Xu YX, Xiao YQ, Liu H, et al. Sphingosine kinase 1 mediates neuroinflammation following cerebral ischemia. Exp Neurol. 2015;272:160–9.

    Article  CAS  PubMed  Google Scholar 

  202. Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ, et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A. 2014;111(51):18315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, et al. Combination of the immune modulator Fingolimod with Alteplase in acute ischemic stroke: a pilot trial. Circulation. 2015;132(12):1104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Frenkel D, Huang Z, Maron R, Koldzic DN, Hancock WW, Moskowitz MA, et al. Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. J Immunol. 2003;171(12):6549–55.

    Article  CAS  PubMed  Google Scholar 

  205. Frenkel D, Huang Z, Maron R, Koldzic DN, Moskowitz MA, Weiner HL. Neuroprotection by IL-10-producing MOG CD4+ T cells following ischemic stroke. J Neurol Sci. 2005;233(1–2):125–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the National Science Foundation of China (81371278, 81471336, 81373382). Additionally, the program was supported by grants from the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD) and Suzhou Clinical Research Center of Neurological Disease (Szzx201503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, J., Cheng, J. (2017). Immunology of Ischemic Stroke: Impact, Mechanisms, and Immunomodulatory Therapies. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_12

Download citation

Publish with us

Policies and ethics