Advertisement

An Efficient Genetic Algorithm for Fuzzy Community Detection in Social Network

  • Harish Kumar ShakyaEmail author
  • Kuldeep Singh
  • Bhaskar Biswas
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 712)

Abstract

A new fuzzy genetic algorithm proposed for community identification in social networks. In this paper, we have used matrix encoding that enables traditional crossover between individuals and mutation takes place in some of the individuals. Matrix encoding determines which node belongs to which community. Using these concepts enhance the overall performance of any evolutionary algorithms. In this experiment, we used the genetic algorithm with the fuzzy concept and compared to other existing methods like as crisp genetic algorithm and vertex similarity based genetic algorithm. We employed the three real world dataset strike, Karate Club, Dolphin in this work. The usefulness and efficiency of proposed algorithm are verified through the accuracy and quality metrics and provide a rank of proposed algorithm using multiple criteria decision-making method.

Keywords

Community detection Fuzzy modularity Genetic algorithm Metrics Social network 

References

  1. 1.
    Li, Y., Liu, G., Lao, S.Y.: A genetic algorithm for community detection in complex networks. Journal of Central South University 20(5), 1269–1276 (2013). doi: 10.1007/s11771-013-1611-y CrossRefGoogle Scholar
  2. 2.
    Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004). doi: 10.1103/PhysRevE.69.026113 CrossRefGoogle Scholar
  3. 3.
    Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004). doi: 10.1103/PhysRevE.69.066133 CrossRefGoogle Scholar
  4. 4.
    Chikhi, N.F., Rothenburger, B., Aussenac-Gilles, N.: Community structure identification: a probabilistic approach. In: 2009 International Conference on Machine Learning and Applications, ICMLA 2009, pp. 125–130. IEEE, December 2009. doi: 10.1109/ICMLA.2009.66
  5. 5.
    Chang, C.S., Hsu, C.Y., Cheng, J., Lee, D.S.: A general probabilistic framework for detecting community structure in networks. In: 2011 Proceedings IEEE INFOCOM, pp. 730–738. IEEE, April 2011. doi: 10.1109/INFCOM.2011.5935256
  6. 6.
    Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Series C (Appl. Stat.) 28(1), 100–108 (1979). 10.2307/2346830zbMATHGoogle Scholar
  7. 7.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984). doi: 10.1016/0098-3004(84)90020-7 CrossRefGoogle Scholar
  8. 8.
    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009). doi: 10.1088/1367-2630/11/3/033015 CrossRefGoogle Scholar
  9. 9.
    Riedy, J., Bader, D.A., Jiang, K., Pande, P., Sharma, R.: Detecting communities from given seeds in social networks. Georgia Institute of Technology (2011)Google Scholar
  10. 10.
    Hafez, A.I., ella Hassanien, A., Fahmy, A.A., Tolba, M.F.: Community detection in social networks by using Bayesian network and expectation maximization technique. In: 2013 13th International Conference on Hybrid Intelligent Systems (HIS), pp. 209–214. IEEE, December 2013. doi: 10.1109/HIS.2013.6920484
  11. 11.
    Michael, J.H.: Labor dispute reconciliation in a forest products manufacturing facility. For. Prod. J. 47, 41–45 (1997)Google Scholar
  12. 12.
    Zachary, W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)CrossRefGoogle Scholar
  13. 13.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003). doi: 10.1007/s00265-003-0651-y CrossRefGoogle Scholar
  14. 14.
    Kou, G., Peng, Y., Wang, G.: Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf. Sci. 275, 1–12 (2014). http://dx.doi.org/10.1016/j.ins.2014.02.137 CrossRefGoogle Scholar
  15. 15.
    Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms. arXiv preprint arXiv:0711.0491 (2007)
  16. 16.
    Zhang, S., Wang, R.S., Zhang, X.S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Phys. A 374(1), 483–490 (2007). doi: 10.1016/j.physa.2006.07.023 CrossRefGoogle Scholar
  17. 17.
    Liu, J.: Fuzzy modularity and fuzzy community structure in networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 77(4), 547–557 (2010). https://doi.org/10.1140/epjb/e2010-00290-3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Harish Kumar Shakya
    • 1
    Email author
  • Kuldeep Singh
    • 1
  • Bhaskar Biswas
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations