Advertisement

Classification Algorithms for Prediction of Lumbar Spine Pathologies

  • Rajni BediEmail author
  • Ajay Shiv Sharma
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 712)

Abstract

Classes can be predicted correctly in the dataset using Classification. For the present study, weka data mining tool is used to predict the lumbar spine pathologies. In this work dataset is firstly classified using different algorithms and then it is determined that which classification algorithm performs better for predicting lumbar spine pathologies. Lumbar spine diseases are predicted with identification of symptoms in patients. We have evaluated and compared six classification algorithms using different evaluation criteria. For the present work, the multilayer perceptron algorithm gives best results to predict the lumbar spine pathologies. This model can be used by the radiologists for lumbar spine pathologies prediction.

Keywords

Lumbar disc disease Lumbar spinal stenosis Spondylolisthesis Intervertebral disc 

References

  1. 1.
    NINDS: National institute of neurological disorders and stroke (ninds): low back pain fact sheet, NIND brochure (2008)Google Scholar
  2. 2.
    Arthur, F.D., Agur, A.M.R.: Atlas of Anatomy, 11th edn. Lippincott Williams and Wilkins, Philadelphia (2004)Google Scholar
  3. 3.
    Markman, J.D., Gaud, K.G.: Lumbar spinal stenosis in older adults: current understanding and future directions. Clin. Geriatr. Med. 24, 369–388 (2008). doi: 10.1016/j.cger.2007.12.007 CrossRefGoogle Scholar
  4. 4.
    Ramana, B.V., Babu, M.S.P.: Liver classification using modified rotation forest. Int. J. Eng. Res. Dev. 1, 17–24 (2012)Google Scholar
  5. 5.
    Nookala, G.K.M., Pottumuthu, B.K., Orsu, N., Mudunuri, S.B.: Performance analysis and evaluation of different data mining algorithms used for cancer classification. Int. J. Adv. Res. Artif. Intell. 2, 49–55 (2013). doi: 10.14569/IJARAI.2013.020508 Google Scholar
  6. 6.
    Exarchos, T.P., Tzallas, A.T., Baga, D., Chaloglou, D., Fotiadis, D.I., Tsouli, S., Diakou, M., Konitsiotis, S.: Using partial decision trees to predict Parkinson’s symptoms: a new approach for diagnosis and therapy in patients suffering from Parkinson’s disease. Comput. Biol. Med. 42, 195–204 (2012). doi: 10.1016/j.compbiomed.2011.11.008 CrossRefGoogle Scholar
  7. 7.
    Koziol, J.A., Feng, A.C., Jia, Z., Wang, Y., Goodison, S., McClelland, M., Mercola, D.: The wisdom of the commons: ensemble tree classifiers for prostate cancer diagnosis. Bioinformatics 25, 54–60 (2009). doi: 10.1093/bioinformatics/btn354 CrossRefGoogle Scholar
  8. 8.
    Shin, A.M., Lee, I.H., Lee, G.H., Park, H.J., Park, H.S., Yoon, K.I., Lee, J.J., Kim, Y.N.: Diagnostic analysis of patients with essential hypertension using association rule mining. Healthc. Inf. Res. 16, 77–81 (2010). doi: 10.4258/hir.2010.16.2.77 CrossRefGoogle Scholar
  9. 9.
    Aljumah, A.A., Ahamad, M.G., Siddiqui, M.K.: Application of data mining: diabetes health care in young and old patients. J. King Saud Univ.-Comput. Inf. Sci. 25, 127–136 (2013). doi: 10.1016/j.jksuci.2012.10.003 Google Scholar
  10. 10.
    Osmanbegovi, E., Suljic, M.: Data mining approach for predicting student performance. Econ. Rev. 10, 3–12 (2012)Google Scholar
  11. 11.
    Williams, K., Idowu, P.A., Balogun, J.A., Oluwaranti, A.: Breast cancer risk prediction using data mining classification techniques. Trans. Netw. Commun. 3, 1–11 (2015)Google Scholar
  12. 12.
    Dangare, C.S., Apte, S.S.: Improved study of heart disease prediction system using data mining classification techniques. Int. J. Comput. Appl. 47, 44–48 (2012). doi: 10.5120/7228-0076 Google Scholar
  13. 13.
    Dhamodharan, S.: Liver disease prediction using bayesian classification. In: 4th National Conference on Advanced Computing, Applications & Technologies, pp. 1–3 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Computer Science and Engineering DepartmentLyallpur Khalsa College of EngineeringJalandharIndia
  2. 2.Information Technology DepartmentGuru Nanak Dev Engineering CollegeLudhianaIndia

Personalised recommendations