Advertisement

Electroencephalography Based Analysis of Emotions Among Indian Film Viewers

  • Gautham Krishna G
  • Krishna G
  • Bhalaji NEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 712)

Abstract

The film industry has been a major factor in the rapid growth of the Indian entertainment industry. While watching a film, the viewers undergo an experience that evolves over time, thereby grabbing their attention. This triggers a sequence of processes which is perceptual, cognitive and emotional. Neurocinematics is an emerging field of research, that measures the cognitive responses of a film viewer. Neurocinematic studies, till date, have been performed using functional magnetic resonance imaging (fMRI); however recent studies have suggested the use of advancements in electroencephalography (EEG) in neurocinematics to address the issues involved with fMRI. In this article the emotions corresponding to two different genres of Indian films are captured with the real-time brainwaves of viewers using EEG and analyzed using R language.

Keywords

EEG Indian film Neurocinematics Cognitive review BCI 

References

  1. 1.
    Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., Heeger, D.J.: Neurocinematics: the neuroscience of film. Projections 2(1), 1–26 (2008). doi: 10.3167/proj.2008.020102 CrossRefGoogle Scholar
  2. 2.
    Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., Malach, R.: Intersubject synchronization of cortical activity during natural vision. Science 303(5664), 1634–1640 (2004). doi: 10.1126/science.1089506 CrossRefGoogle Scholar
  3. 3.
    Donoghue, J.P., Nurmikko, A., Black, M., Hochberg, L.R.: Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J. Physiol. 579(Pt. 3), 603–611 (2007). doi: 10.1113/jphysiol.2006.127209 CrossRefGoogle Scholar
  4. 4.
    Mostow, J., Chang, K., Nelson, J.: Toward exploiting EEG input in a reading tutor. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 230–237. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21869-9_31 CrossRefGoogle Scholar
  5. 5.
    Berka, C., Levendowski, D.J., Lumicao, M.N., Yau, A., Davis, G., Zivkovic, V.T., Olmstead, R.E., Tremoulet, P.D., Craven, P.L.: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78(5 Suppl.), B231–B244 (2007)Google Scholar
  6. 6.
    Lutsyuk, N.V., Eismont, E.V., Pavlenko, V.B.: Correlation of the characteristics of EEG potentials with the indices of attention in 12-to 13-year-old children. Neurophysiology 38(3), 209–216 (2006). doi: 10.1007/s11062-006-0048-4 CrossRefGoogle Scholar
  7. 7.
    Marosi, E., Bazan, O., Yanez, G., Bernal, J., Fernandez, T., Rodriguez, M., Silva, J., Reyes, A.: Narrow-band spectral measurements of EEG during emotional tasks. Int. J. Neurosci. 112(7), 871–891 (2002)CrossRefGoogle Scholar
  8. 8.
    Neurosky: Neurosky’s eSense™ Meters and Detection of Mental State. http://www.neurosky.com/
  9. 9.
    Klem, G.H., Luders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. 52(Suppl.), 3–6 (1999)Google Scholar
  10. 10.
    Oyama, K., Takeuchi, A., Chang, C.K.: Brain lattice: concept lattice based causal analysis of changes in mental workload. In: IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), San Diego, CA, pp. 59–66 (2013). doi: 10.1109/CogSIMA.2013.6523824
  11. 11.
    Sharbrough, F., Chatrian, C.E., Lesser, R.P., Luders, H., Nuwer, M., Piction, T.W.: American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8(2), 200–202 (1991)CrossRefGoogle Scholar
  12. 12.
    Kauttonen, J., Kaipainen, M., Tikka, P.: Model of narrative narrowness for neurocinematic experiments. In: Proceedings of the 5th Workshop on Computational Models of Narrative (CMN 2014). Open Access Series Informatics (Germany: Schloss Dagstuhl - Leibniz - Zentrum für Informatik, Dagstuhl Publishing), pp. 77–87 (2014)Google Scholar
  13. 13.
    Guðmundsdóttir, K.: Improving players’ control over the neurosky brain-computer interface. Research report (2011). http://hdl.handle.net/1946/9187

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Information TechnologySSN College of EngineeringChennaiIndia

Personalised recommendations