Skip to main content

Aerodynamic Design Technologies for Turbines

  • Chapter
  • First Online:
Axial Turbine Aerodynamics for Aero-engines
  • 2303 Accesses

Abstract

Aerodynamic design of turbines is a process of progressive design and optimization from low dimensions to high dimensions, and the design results obtained in low-dimensional space serve as the basis of high-dimensional design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Han, J. C., Duffa, S., & Ekkad, S. V. (2000). Gas turbine heat transfer and cooling technology. New York: Taylor & Francis.

    Google Scholar 

  2. U.S. Department of Energy, et al. (2006). The gas turbine handbook. http://www.netl.doe.gov/research/coal/energy-systems/turbines/publications/handbook.

  3. Aero Engine Design Handbook Editorial Board, Wang, H., et al. (2001). Aero engine design handbook, volume 16, air system and heat transfer analysis. Beijing: Aviation Industry Press.

    Google Scholar 

  4. Ainley, D. G., & Mathieson, G. C. R. (1951). A method of performance estimation for axial-flow turbines (pp. 2974–2974). USA: Defense Technical Information Center.

    Google Scholar 

  5. Dunham, J., & Came, P. M. (1970). Improvements to the Ainley-Mathieson method of turbine performance prediction. Journal for Engineering for Power, 92(3), 252–256.

    Article  Google Scholar 

  6. Kacker, S. C., & Okapuu, U. (1982). A mean line prediction method for axial flow turbine efficiency. Journal for Engineering for Power, 104(1), 111–119.

    Article  Google Scholar 

  7. Soderberg, C. R. (1949). Gas turbine laboratory. Massachusetts Institute of Technology (Unpublished Notes).

    Google Scholar 

  8. Traupel, W. (1977). Thermische Turbomaschinen Zweiter Band Geländerte Betriebsbedingungen, Regelung, Mechanische Problem, Temperature problem. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  9. Stewart, W. L., Whitney, W. J., & Wong, R. Y. (1960). A study of boundary-layer characteristics of turbomachine blade rows and their relation to over-all blade loss. Journal of Basic Engineering, 82(3), 588–592.

    Article  Google Scholar 

  10. Balje, O. E., & Binsley, R. L. (1968). Axial turbine performance evaluation. Part A—Loss-geometry relationships. Journal for Engineering for Power, 90(4), 341–348.

    Google Scholar 

  11. Craig, H. R. M., & Cox, H. J. A. (1970). Performance estimation of axial flow turbines. Proceedings of the Institution of Mechanical Engineers, 185(1), 407–424.

    Article  Google Scholar 

  12. Denton, J. D. (1993). Loss mechanisms in turbomachinery. ASME Paper 93-GT-435.

    Google Scholar 

  13. Denton, J. D. (1993). Loss mechanisms in turbomachines. Journal of Turbomachinery, 115(4), 621–656.

    Article  Google Scholar 

  14. Denton, J. D. (1990). Entropy generation in turbomachinery flows. SAE Technical Paper.

    Google Scholar 

  15. Ehrich, F., & Detra, R. (1954). Transport of the boundary layer in secondary flow. Journal of Aeronautical Sciences, 21(2), 136–138.

    Google Scholar 

  16. Scholz, N. (1954). Secondary flow loss in turbine cascades. Journal of Aeronautical Sciences, 21(10), 707–708.

    Article  Google Scholar 

  17. Hawthorne, W. R. (1955). Some formula for the calculation of secondary flow in cascades. A R. C. Report.

    Google Scholar 

  18. Boulter, R. A. (1962). The effect of aspect ratio on the secondary losses in a cascade of impulse turbine blade (Unpublished Pamertrada Report).

    Google Scholar 

  19. Lakshminarayana, B. (1970). Methods of predicting the tip clearance effects in axial flow turbomachinery. Journal of Basic Engineering, 92(3), 467–480.

    Article  Google Scholar 

  20. Ito, S., Eckert, E. R. G., & Goldstein, R. J. (1980). Aerodynamic loss in a gas turbine stage with film cooling. Journal for Engineering for Power, 102(4), 964–970.

    Article  Google Scholar 

  21. Lakshminarayana, B. (1996). Fluid dynamics and heat transfer of turbomachinery. USA: Wiley-Inter Science.

    Google Scholar 

  22. Aero Engine Design Handbook Editorial Board, Huang, Q., et al. (2001). Aero engine design handbook, volume 10, turbine. Beijing: Aviation Industry Press.

    Google Scholar 

  23. Traupel, W. (1985). Thermische Turbomaschinen. Beijing: China Water & Power Press.

    MATH  Google Scholar 

  24. Ning, W. (2000). Significance of loss models in aerothermodynamic simulation for axial turbines. Royal Institute of Technology.

    Google Scholar 

  25. Coull, J. D., & Hodson, H. P. (2012). Predicting the profile loss of high-lift low pressure turbines. Journal of Turbomachinery, 134, 021002.

    Article  Google Scholar 

  26. Curtis, E. M., Hodson, H. P., Banieghbal, M. R., Howell, R. J., & Harvey, N. W. (1997). Development of blade profiles for low-pressure turbine applications. ASME Journal of Turbomachinery, 119(3), 531–538.

    Article  Google Scholar 

  27. Roberts, Q. D. H. (1998). The trailing edge loss of subsonic turbine blades. Ph.D. thesis, Cambridge University.

    Google Scholar 

  28. Hartsel, J. E. (1972). Prediction of effects of mass-transfer cooling on the blade-row efficiency of turbine airfoils. AIAA Paper 1972-11.

    Google Scholar 

  29. Lakshminarayana, B. (1996). Crossflow in a turbine cascade passage. Journal of Engineering for Power, 102(4), 886–892.

    Google Scholar 

  30. Kollen, O., & Koschel, W. (1985). Effect of film cooling on the aerodynamic performance of a turbine cascade. AGARD CP 227.

    Google Scholar 

  31. Shapiro, A. H. (1953). The dynamics and thermodynamics of compressible fluid flow. New York: The Ronald Press.

    Google Scholar 

  32. Zweifel, O. (1946). Optimum blade pitch for turbomachines with special reference to blades of great curvature. The Engineers’ Digest, 7(11), 358–360.

    Google Scholar 

  33. Stewart, W. L., Whitney, W. J., & Wong, R. Y. (1960). A study of boundary-layer characteristics of turbomachine blade rows and their relation to over-all blade loss. Journal of Fluids Engineering, 82(3), 588–592.

    Google Scholar 

  34. Baljé, O. E., & Binsley, R. L. (1968). Axial turbine performance evaluation, Part A—Loss-geometry relationship. Journal of Engineering for Power, 90(4), 341–348.

    Google Scholar 

  35. Lim, C. H., Pullan, G., & Northall, J. (2010). Estimating the loss associated with film cooling for a turbine stage. ASME GT2010-22327.

    Google Scholar 

  36. Young, J. B., & Wilcock, R. C. (2002). Modeling the air-cooled gas turbine: Part 1—General thermodynamics. Journal of Turbomachinery, 124(2), 207–213.

    Article  Google Scholar 

  37. Young, J. B., & Wilcock, R. C. (2002). Modeling the air-cooled gas turbine: Part 2—Coolant flows and losses. Journal of Turbomachinery, 124(2), 214–222.

    Article  Google Scholar 

  38. Smith, S. F. (1965). A simple correlation of turbine efficiency. In Proceedings of the Seminar on Advanced Problems in Turbomachinery. Von Karman Institute for Fluid Dynamics.

    Google Scholar 

  39. Coull, J. D., & Hodson, H. P. (2011). Blade loading and its application in the mean-line design of low pressure turbines. ASME Paper GT2011–45238.

    Google Scholar 

  40. Murthy, S. V. R., & Kumar, S. K. (2012). Parametric study of axial flow turbine for mean-line design and blade element. GTINDIA 2012-9589.

    Google Scholar 

  41. Yao, L. (2013). Studies on an optimal method of low dimensional aerodynamic design for multistage low pressure turbine. Beijing: Beihang University.

    Google Scholar 

  42. Yang, L. (2006). Investigations of complicated flow mechanism and aerodynamic design method in low pressure turbine at low reynolds number. Beijing: Beihang University.

    Google Scholar 

  43. Adam, O., & Léonard, O. (2007). A quasi-one dimensional model for axial turbines. ISABE 2007-1215.

    Google Scholar 

  44. Adam, O., & Léonard, O. (2008). A quasi-one dimensional model for multistage turbomachines. Journal of Thermal Science, 17(1), 7–20.

    Article  Google Scholar 

  45. Zhang, X., Liu, J., & An, B. (2011). Investigation on the computational method of axial turbine aerodynamic characteristics based on 1.5 dimensional Euler equations. Journal of Engineering Thermophysics, 32(4), 569–572.

    Google Scholar 

  46. He, J., Zou, Z., & Yao, L. (2014). A one-dimensional simulation method to calculate turbine performance based on body forced model. Research Report, Beihang University.

    Google Scholar 

  47. Zhang, W. (2013). Studies on flow mechanisms and aerodynamic design of low-pressure turbine. Beijing: Beihang University.

    Google Scholar 

  48. Zhdanov, I., Staudacher, S., & Falaleev, S. (2013). An advanced usage of meanline loss systems for axial turbine design optimisation. ASME Paper GT2013-94323.

    Google Scholar 

  49. Yao, L., Zou, Z., Zhang, W., et al. (2013). An optimal method of one-dimensional design for multistage low pressure turbine based on particle swarm optimization. Journal of Propulsion Technology, 34(8), 1042–1043.

    Google Scholar 

  50. Suchezky, M., & Cruzen, G. S. (2012). Variable-speed power-turbine for the large civil tilt rotor. NASA CR-217424.

    Google Scholar 

  51. D’Angelo, M. (1995). Wide speed range turboshaft study. NASA CR-198380.

    Google Scholar 

  52. Clark, J. P., Koch, P. J., & Ooten, M. K. (2009). Design of turbine components to answer research questions in unsteady aerodynamics and heat transfer. AFRL-RZ-WP-TR-2009-2180.

    Google Scholar 

  53. Welch, G. E. (2010). Assessment of aerodynamic challenges of a variable-speed power turbine for large civil tilt-rotor application. NASA TM-216758.

    Google Scholar 

  54. Hendricks, E. S., Jones, S. M., & Gray, J. S. (2014). Design optimization of a variable-speed power-turbine. AIAA Paper 2014-3445.

    Google Scholar 

  55. Zhang, S. (2015). Study on aerodynamic design method of variable-speed turbine. Beijing: Beihang University.

    Google Scholar 

  56. Jiang, H., Huang, S., & Zhou, R. (2004). Idea of aero-engine development by “core-engine” in series and derivation. Gas Turbine Experiment and Research, 17(1), 1–5.

    Google Scholar 

  57. Bolin, G. W., Field, J., Kevin, J. B., et al. (1999). F414 engine today and growth potential for 21st century fighter mission challenges. ISABE Paper 99-7113.

    Google Scholar 

  58. Zane, D., & Gastineau, Ph. D. (2002). Propulsion technology planning for engine health management. Air Force Research Laboratory.

    Google Scholar 

  59. Squadron, L. R. (2001). Turbine engine research in the United States air force. IEEE AERO 2001-931393.

    Google Scholar 

  60. Fu, C. (2010). Study on some key technologies related to high performance turbine aerodynamics design. Beijing: Beihang University.

    Google Scholar 

  61. Fu, C., Zou, Z., Liu, H., et al. (2011). Turbine aerodynamic design criteria of versatile core. Journal of Propulsion Technology, 32(2), 165–174.

    Google Scholar 

  62. Zhou, K., Zou, Z., Liu, H., et al. (2012). Aerodynamic design of counter-rotating turbine for aero-engine. Science & Technology Review, 30(15), 61–74.

    Google Scholar 

  63. Wintucky, W. T., & Stewart, W. L. (1957). Analysis of two-stage counter-rotating turbine efficiencies in terms of work and speed requirements. NACA, RM E57 L05.

    Google Scholar 

  64. Louis, J. F. (1985). Axial flow counter-rotating turbines. ASME Paper 85-GT218.

    Google Scholar 

  65. Huber, F. W., Branstrom, B. R., Finke, A. K., et al. (1993). Design and test of a small two stage counter-rotating turbine for rocket engine application. AIAA Paper 93-2136.

    Google Scholar 

  66. Yamamoto, A., Matsunuma, T., Ikeuchi, K., et al. (1994). Unsteady tip-clearance flows and losses due to turbine rotor-stator interaction. ASME Paper 94-GT-461.

    Google Scholar 

  67. Ji, L., Quan, X., & Xu, J. (2001). A primary design of one counter-rotating turbine. Journal of Engineering Thermophysics, 22(4), 438–440.

    Google Scholar 

  68. Ji, L. (2000). A preliminary study on complex flow field simulation and design and experiment of counter rotating turbines. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences.

    Google Scholar 

  69. Ya, Zhou. (2014). Investigations of aerodynamic design techniques for advanced counter-rotating turbine. Beijing: Beihang University.

    Google Scholar 

  70. Fang, X. (2003). Aerodynamic analysis of supersonic and transonic highly loaded vaneless contra-rotating axial new concept turbines. Beijing: Beihang University.

    Google Scholar 

  71. Yan, X. (2003). Research on pneumatic design method of rotating turbine. Xi’an: Northwestern Polytechnical University.

    Google Scholar 

  72. Zhou, K. (2014). Investigations of aerodynamic design techniques for counter-rotating turbine in adaptive cycle engine. Beijing: Beihang University.

    Google Scholar 

  73. Zhou, Y., Liu, H., & Zou, Z. (2010). Aerodynamics design of two-stage vaneless counter-rotating turbine. Journal of Propulsion Technology, 31(6), 689–695.

    Google Scholar 

  74. Aungier, R. H. (2005). Turbine aerodynamics: Axial-flow and radial-inflow turbine design and analysis. ASME Press.

    Google Scholar 

  75. Jiang, H. (2001). Some experiences and enlightenment of developing fan/compressor design system abroad. Aeroengine, 2, 31–45.

    Google Scholar 

  76. Yuan, N., Zhang, Z., Wang, S., et al. (2000). Aerodynamic design system adapting to three dimensional turbine. Journal of Propulsion Technology, 21(2), 1–4.

    Google Scholar 

  77. Huang, H., Feng, G., Wang, Z., et al. (1999). A three -dimensional design system applicable to naval steam turbines. Journal of Engineering for Thermal Energy and Power, 14(80), 119–121.

    Google Scholar 

  78. Zeng, J., Wang, L., & Wang, B. (2011). Full-3D simulation and analysis of flow in GE energy efficient engine turbine component. In ANSYS 2011 China User Conference, Sanya, China.

    Google Scholar 

  79. Sridhar, M., Sunnam, S., Goswami, S., et al. (2011). CFD aerodynamic performance validation of a two-stage high pressure turbine. ASME Paper, GT2011-45569.

    Google Scholar 

  80. Dong, P. (2009). Research on conjugate heat transfer simulation of aero turbine engine air-cooled vane. Harbin: Harbin Institute of Technology.

    Google Scholar 

  81. Lu, S. (2014). Research on turbine aerodynamic design system with optimization of film cooling and conjugate heat transfer. Harbin: Harbin Institute of Technology.

    Google Scholar 

  82. Oberkampf, W. L., Sindir, M. N., & Conlisk, A. T. (1998). AIAA guide for the verification and validation of computational fluid dynamics simulations. American Institute of Aeronautics & Astronautics.

    Google Scholar 

  83. Ghanem, R. G., Spanos, P. D., & Spanos, P. (2003). Stochastic finite element: A spectral approach (p. 224). New York, Berlin: Springer.

    Google Scholar 

  84. Schuëller, G. I. (1997). A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics, 12(4), 197–321.

    Article  Google Scholar 

  85. Tatang, M. A. (2010). Direct incorporation of uncertainty in chemical and environmental engineering systems. Massachusetts Institute of Technology.

    Google Scholar 

  86. Dow, E. A. (2014). Robust design and tolerancing of compressor blades. Massachusetts Institute of Technology.

    Google Scholar 

  87. Garzón, V. E. (2003). Probabilistic aerothermal design of compressor airfoils. Massachusetts Institute of Technology.

    Google Scholar 

  88. Bunker, R. S. (2009). The effects of manufacturing tolerances on gas turbine cooling. Journal of Turbomachinery, 131(4), 1–11.

    Article  Google Scholar 

  89. D’Ammaro, A., & Montomoli, F. (2013). Uncertainty quantification and film cooling. Computer & Fluids, 71, 320–326.

    Article  MathSciNet  MATH  Google Scholar 

  90. Montomoli, F., Hodson, H., & Haselbach, F. (2010). Effect of roughness and unsteadiness on the performance of a new low pressure turbine blade at low Reynolds numbers. Journal of Turbomachinery, 132, 031018.

    Article  Google Scholar 

  91. Montomoli, F., Carnevale, M., D’Ammaro, A., et al. (2015). Uncertainty quantification in computational fluid dynamics and aircraft engines. Berlin: Springer.

    Google Scholar 

  92. Montomoli, F., Massini, M., & Salvadori, S. (2011). Geometrical uncertainty in turbomachinary: Tip gap and fillet radius. Computer & Fluids, 46, 362–368.

    Article  MATH  Google Scholar 

  93. Guo, Xiangkun. (2016). Uncertainty analysis of the geometric deviations on turbine performance. Beijing: Beihang University.

    Google Scholar 

  94. Hylton, L. D., Mihelc, M. S., Turner, E. R., et al. (1983). Analytical and experiment evaluation of the heat transfer distribution over the surface of turbine vane. NASA Technical Report CR168015.

    Google Scholar 

  95. Schallhorn, P., Palmiter, C., Farmer, J., et al. (2000). Interfacing the generalized fluid system simulation program with the SINDA/G thermal program. In AIAA-2000-2504, 36th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Alabama, USA.

    Google Scholar 

  96. Holt, K., Majumdar, A., Steadman, T., & Hedayat, A. (2000). Numerical modeling and test data comparison of propulsion test article helium pressurization system. In AIAA-2000-3719, 36th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Alabama, USA.

    Google Scholar 

  97. Sözen, M. (2002). A computational method for determining the equilibrium composition and product temperature in a LH2/LOX combustor. NASA/CR-2003-212397. The NASA Faculty Fellowship Program Research Reports, Marshall Space Flight Center.

    Google Scholar 

  98. Schallhorn, A., & Hass, E. (2004). Forward looking pressure regulator algorithm for improved modeling performance within the generalized fluid system simulation program. In AIAA-2004-3667, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Florida, USA.

    Google Scholar 

  99. Meitner, L. (2003). Procedure for determining 1-D flow distributions in arbitrarily connected passages without the influence of pumping, GT2003-38061. In Proceeding of the ASME Turbo Expo, Barcelona, Spain, Atlanta, Georgia, USA.

    Google Scholar 

  100. Okita, Y. (2006). Transient thermal and flow field in a turbine disk rotor-stator system, GT2006-90033. In Proceeding of the ASME Turbo Expo, Barcelona, Spain.

    Google Scholar 

  101. Bianchini, C., Da Soghe, R., Facchini, B., et al. (2008). Development of numerical tools for stator-rotor cavities calculation in heavy-duty gas turbines, GT2008-51268. In Proceeding of the ASME Turbo Expo, Berlin, Germany.

    Google Scholar 

  102. Young, C., & Snowsill Guy, D. (2002). CFD optimization of cooling air offtake passages within rotor cavities, GT2002-30480. In Proceeding of the ASME Turbo Expo, Amsterdam, The Netherlands.

    Google Scholar 

  103. Andreini, A., Da Soghe, R., Facchini, B., et al. (2008). Turbine stator well CFD studies: Effects of cavity cooling air flow, GT2008-51067. In Proceeding of the ASME Turbo Expo, Berlin, Germany.

    Google Scholar 

  104. Dixon, J. A., Brunton, I. L., & Scan lon, T. J. (2006). Turbine stator well heat transfer and cooling flow optimization, GT2006-90306. In Proceeding of the ASME Turbo Expo, Barcelona, Spain.

    Google Scholar 

  105. Jin, J. (2003). A summary of numerical propulsion simulation system(NPSS) by NASA. Gas Turbine Experiment and Research, 16, 57–62.

    Google Scholar 

  106. Flowmaster Automotive Case Study. (2007). BMW Motoren.

    Google Scholar 

  107. Masahik, Kubo. (2005). Introduction of coupling simulation of automatic vehicle cooling system. Minato: Mitsubishi Auto Co., Ltd.

    Google Scholar 

  108. Wang, P. (2014). Investigations on multi-fidelity coupled method and its applications for flow simulation. Beijing: Beihang University.

    Google Scholar 

  109. Zhou, Z., & Sun, R. (2006). Study on one-dimensional model and CFD coupled air system analysis method. Zhuzhou: China Aviation Power Machinery Research Institute.

    Google Scholar 

  110. Wang, P., Zheng, Y., Zou, Z .P., et al. (2013). A novel multi-fidelity coupled simulation method for flow systems. Chinese Journal of Aeronautics, 26(4), 868–875.

    Google Scholar 

  111. Garabedian, P., & Korn, D. (1976). A systematic method for computer design of supercritical airfoils in cascade. Communications on Pure and Applied Mathematics, 29(4), 369–382.

    Article  MathSciNet  MATH  Google Scholar 

  112. Schmidt, E. (1980). Computation of supercritical compressor and turbine cascades with a design method for transonic flows. Journal of Engineering for Gas Turbines and Power, 102(1), 68–74.

    Article  MathSciNet  Google Scholar 

  113. Borges, J. E. (1990). A three-dimensional inverse method for turbomachinery: Part I—Theory. Journal of Turbomachinery, 112(3), 346–354.

    Article  Google Scholar 

  114. Dang, T. Q. (1993). A fully three-dimensional inverse method for turbomachinery blading in transonic flows. Journal of Turbomachinery, 115(2), 354–361.

    Article  Google Scholar 

  115. Mark, D., & Harold, Y. (1998). A user’s guide to MISES 2.53. MIT Computational Aerospace Sciences Laboratory.

    Google Scholar 

  116. Chen, N. X. (2010). Aerothermodynamics of Turbomachinery: Analysis and design. John Wiley & Sons(Asia) Pte Ltd.

    Google Scholar 

  117. Zhu, F. Aerodynamic design of axial-flow aero-turbomachine. Xi’an: Northwestern Polytechnical University Aviation Major Teaching Materials Editing Room.

    Google Scholar 

  118. Alonov, B. M. (1980). Modeling of aviation gas turbine blades. Beijing: National Defence Industry Press.

    Google Scholar 

  119. Pritchard, L. J. (1985). An eleven parameter axial turbine airfoil geometry model. ASME Paper 85-GT-219.

    Google Scholar 

  120. Korakianitis, T. (1993). Hierarchical development of three direct-design methods for two-dimensional axial-turbomachinery cascades. Journal of Turbomachinery, 115(2), 314–324.

    Article  Google Scholar 

  121. Korakianitis, T. (1993). Prescribed-curvature-distribution airfoils for the preliminary geometric design of axial-turbomachinery cascades. Journal of Turbomachinery, 115(2), 325–333.

    Article  Google Scholar 

  122. Korakianitis, T., & Papagiannidis, P. (1993). Surface-curvature-distribution effects on turbine-cascade performance. Journal of Turbomachinery, 115(2), 334–341.

    Article  Google Scholar 

  123. Corral, R., & Pastor, G. (2004). Parametric design of turbomachinery airfoils using highly differentiable splines. Journal of Propulsion and Power, 20(2), 335–343.

    Article  Google Scholar 

  124. Anders, J. M., & Haarmeyer, J. (1999). A parametric blade design system. In Von Karman Institute for Fluid Dynamics: Lecture Series 1999–2002 Turbomachinery Blade Design Systems.

    Google Scholar 

  125. Trigg, M. A., Tubby, G. R., & Sheard, A. G. (1999). Automatic genetic optimization approach to two-dimensional blade profile design for steam turbines. Journal of Turbomachinery, 121(1), 11–17.

    Article  Google Scholar 

  126. Koini, G. N., Sarakinos, S. S., & Nikolos, I. K. (2009). A software tool for parametric design of turbomachinery blades. Advances in Engineering Software, 40(1), 41–51.

    Article  MATH  Google Scholar 

  127. Fang, X., Liu, S., & Wang, P. (2007). Research of 3d design method for rotor of supersonic high loaded contra turbine with large expansile meridional channel. Acta Aeronautica et Astronautica Sinica, 28(01), 25–31.

    Google Scholar 

  128. Pritchard, L. J. (1985). An eleven parameter axial turbine aerofoil geometry model. ASME Paper 85-GT-219.

    Google Scholar 

  129. Walraevens, R. E., & Cumpsty, N. A. (1995). Leading edge separation bubbles on turbomachine blades. Journal of Turbomachinery, 117(1), 115–125.

    Article  Google Scholar 

  130. Bai, T., Zou, Z., Zhang, W., et al. (2014). Mechanism of effect of leading-edge geometry on the turbine blade cascade loss. Journal of Aerospace Power, 06, 1482–1489.

    Google Scholar 

  131. Feng, T. (2006). Some problems of flow analysis and design in turbomachinery. Beijing: Beihang University.

    Google Scholar 

  132. Zhang, W. H., Zou, Z. P., & Ye, J. (2012). Leading-edge redesign of a turbomachinery blade and its effect on aerodynamic performance. Applied Energy, 93, 655–667.

    Article  Google Scholar 

  133. Benner, M. W., Sjolander, S. A., & Moustapha, S. H. (1997). Influence of leading-edge geometry on profile losses in turbines at off-design incidence: Experimental results and an improved correlation. Journal of Turbomachinery, 119(2), 193–200.

    Article  Google Scholar 

  134. Filippov, G. A., & Wang, Z. (1963). The calculation of axial symmetric flow in a turbine stage with small ratio of diameter to blade length. Journal of Moscow Power Institute, 47, 63–78.

    Google Scholar 

  135. Harrison, S. (1992). The influence of blade lean on turbine losses. Journal of Turbomachinery, 114(1), 184–190.

    Article  Google Scholar 

  136. Fischer, A., Reiss, W., & Seume, J. R. (2004). Performance of strongly bowed stators in a four-stage high-speed compressor. Journal of Turbomachinery, 126(3), 333–338.

    Article  Google Scholar 

  137. Rosic, B., & Xu, L. (2011). Blade lean and shroud leakage flows in low aspect ratio turbines. Journal of Turbomachinery, 134, 031003.

    Article  Google Scholar 

  138. Zhong, J. (1995). An experimental investigation by using curved blade to control secondary flow in compressor cascade. Harbin: Harbin Institute of Technology.

    Google Scholar 

  139. Zou, Z., Zhao, L., Chen, M., et al. (1998). Three-dimensional blading and its influence on blade aerodynamic loading. Journal of Aerospace Power, 13(3), 235–240.

    Google Scholar 

  140. Wang, Z., & Zheng, Y. (2000). Research status and development of the bowed-twisted blade for turbomachines. Engineering Science, 2(6), 40–48.

    Google Scholar 

  141. Hourmouziadis, J., & Hubner, N. (1985). 3D design of turbine airfoils. ASME Paper 85-GT-188.

    Google Scholar 

  142. Schobeiri, M. T., Suryanarayanan, A., Jermann, C., et al. (2004). A comparative aerodynamic and performance study of a three-stage high pressure turbine with 3-D bowed blades and cylindrical blades. ASME Paper GT2004-53650.

    Google Scholar 

  143. Bohn, D. E., Ren, J., & Tummers, C. (2005). Unsteady 3D numerical of the influence of the blading design on the stator-rotor interaction in a 2-stage turbine. ASME Paper GT2005-68115.

    Google Scholar 

  144. Chen, N. (1995). A comparative study on different leaned and skewed bladings in a turbine stator by 3-D Navier-stokes analysis. AIAA Paper 95-2189.

    Google Scholar 

  145. Ye, X. (1995). Research on three-dimensional flows in bending blade and unstructured mesh methods. Beijing: Beihang University.

    Google Scholar 

  146. Han, W., Han, C., et al. (1991). Effect of blade leaning on the development of passage vortices and losses in the passage of turbine cascade with a great turning angle. In Proceedings of the Chinese society of Engineering Thermophysics, 912034.

    Google Scholar 

  147. Wang, Z., Su, J., & Zhong, J. (1994). New progress of investigation into mechanism of reducing energy loss in cascades with curved and twisted blades. Journal of Engineering Thermophysics, 15(2), 147–152.

    Google Scholar 

  148. Lindner, E. (1995). Numerical and experimental analysis of secondary flow in modern state-of-the-art low pressure guide vane rows. ASME Paper 95-GT-189.

    Google Scholar 

  149. Kawagishi, H., & Kawasaki, S. (1991). The effect of nozzle lean on turbine efficiency. PWR-Vol. 13, Design, Repair, and Refurbishment of Steam Turbines. ASME Paper.

    Google Scholar 

  150. Hesketh, J. A., Tritthart, H., & Aubry, P. (1994). Modernization of steam turbines for improved performance. Symposium on Steam Turbine and Generators.

    Google Scholar 

  151. Trehan, R., & Roy, B. (2013). Investigation of turbine cascade blades with part-span sweep with an open end. ASME Paper GT2013-95314.

    Google Scholar 

  152. Trehan, R., & Roy, B. (2012). Application of sweep to low pressure turbine cascade blade for tip flow containment. AIAA Paper GT2012-3878.

    Google Scholar 

  153. Chen, G. (2009). Design characteristics of Trent 1000. Aero Engine, 35(4), 1–6.

    Google Scholar 

  154. Julian, F. (2008). First steps for CFMI leap-X. Interavia Business and Technology, 700, 4–6.

    Google Scholar 

  155. Bagshaw, D. A., Ingram, G. L., Gregory-Smith, D. G., et al. (2008). An experimental study of three-dimensional turbine blades combined with profiled endwalls. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(1), 103–110.

    Google Scholar 

  156. Rose, M. G. (1994). Non-axisymmetric endwall profiling in the HP NGV’s of an axial flow gas turbine. ASME Paper 94-GT-249.

    Google Scholar 

  157. Kopper, F. C., Milanot, R., & Vancot, M. (1981). Experimental investigation of endwall profiling in a turbine vane cascade. AIAA Journal, 19(8), 1033–1040.

    Article  Google Scholar 

  158. Harvey, N. W., Rose, M. G., Taylor, M. D., et al. (2000). Nonaxisymmetric turbine end wall design: Part 1 three-dimensional linear design system. Journal of Turbomachinery, 122(2), 278–285.

    Article  Google Scholar 

  159. Hartland, J. C., Gregory-Smith, D. G., Harvey, N. W., et al. (2000). Nonaxisymmetric turbine end wall design: Part 2 experimental validation. Journal of Turbomachinery, 122(2), 286–293.

    Article  Google Scholar 

  160. Brennan, G., Harvey, N. W., Rose, M. G., et al. (2003). Improving the efficiency of the Trent 500-HP turbine using nonaxisymmetric end walls: Part 1 turbine design. Journal of Turbomachinery, 125(3), 497–504.

    Article  Google Scholar 

  161. Rose, M. G., Harvey, N. W., Seaman, P., et al. (2001). Improving the efficiency of the Trent 500-HP turbine using nonaxisymmetric end walls: Part 2 experimental validation. ASME Paper 2001-GT-0505.

    Google Scholar 

  162. Germain, T., Nagel, M., & Raab, I. (2010). Improving efficiency of a high work turbine using nonaxisymmetric endwalls—Part I: Endwall design and performance. Journal of Turbomachinery, 132, 021007.

    Article  Google Scholar 

  163. Schüpbach, P., Abhari, R. S., & Rose, M. G. (2010). Improving efficiency of a high work turbine using nonaxisymmetric endwalls—Part II: Time-resolved flow physics. Journal of Turbomachinery, 132, 021008.

    Article  Google Scholar 

  164. Praisner, T. J., Allen-Bradley, E., Grover, E. A., et al. (2013). Application of nonaxisymmetric endwall contouring to conventional and high-lift turbine airfoils. Journal of Turbomachinery, 135, 061006.

    Article  Google Scholar 

  165. Knezevici, D. C., Sjolander, S. A., & Praisner, T. J. (2010). Measurements of secondary losses in a turbine cascade with the implementation of nonaxisymmetric endwall contouring. Journal of Turbomachinery, 132, 011013.

    Article  Google Scholar 

  166. González, P., & Lantero, M. (2006). Low pressure turbine design for Rolls-Royce Trent 900 Turbofan. ASME paper GT2006-90997.

    Google Scholar 

  167. Sun, H., Song, L., & Li, J. (2013). Optimization design of nonaxisymmetrical end wall profiling for turbine cascade. Journal of Xi’an Jiaotong University, 47(9), 35–40.

    Google Scholar 

  168. Tian, Y., Ji, L., Li, W., et al. (2013). Applicability of blended blade and endwall under different operating conditions. Journal of Aerospace Power, 28(8), 1905–1913.

    Google Scholar 

  169. Turgut, Ö. H., & Camcı, C. (2012). Experimental investigation and computational evaluation of contoured endwall and leading edge fillet configurations in a turbine NGV. ASME Paper GT2012-69304.

    Google Scholar 

  170. Zess, G. A., & Thole, K. A. (2002). Computational design and experimental evaluation of using a leading edge fillet on a gas turbine vane. Journal of Turbomachinery, 124(2), 167–175.

    Article  Google Scholar 

  171. Turgut, Ö. H., & Camcı, C. (2013). Influence of leading edge fillet and nonaxisymmetric contoured endwall on turbine NGV exit flow structure and interactions with the rim seal flow. ASME Paper GT2013-95843.

    Google Scholar 

  172. Sauer, H., Muller, R., & Vogeler, K. (2001). Reduction of Secondary flow losses in turbine cascades by leading edge modifications at the endwall. Journal of Turbomachinery, 123(2), 207–213.

    Article  Google Scholar 

  173. Becz, S., & Majewski, M. S. (2003). Leading edge modification effects on turbine cascade endwall loss. ASME Paper GT2003-38898.

    Google Scholar 

  174. Lyall, M. E., King, P. I., Clark, J. P., et al. (2014). Endwall loss reduction of high lift low pressure turbine airfoils using profile contouring—Part I: Airfoil design. Journal of Turbomachinery, 136, 81005.

    Article  Google Scholar 

  175. Sangston, K., Little, J., Lyall, M. E., et al. (2014). End wall loss reduction of high lift low pressure turbine airfoils using profile contouring—Part II: Validation. Journal of Turbomachinery, 136, 81006.

    Article  Google Scholar 

  176. Schlienger, J., Pfau, A., Kalfas, A. I., et al. (2003). Effects of labyrinth seal variation on multistage axial turbine flow. ASME Paper GT2003-38270.

    Google Scholar 

  177. Rosic, B., Denton, J. D., Curtis, E. M., et al. (2008). The influence of shroud and cavity geometry on turbine performance: An experimental and computational study-part ii: exit cavity geometry. Journal of Turbomachinery, 130, 41002.

    Article  Google Scholar 

  178. Wallis, A. M., Denton, J. D., & Demargne, A. A. J. (2001). The control of shroud leakage flows to reduce aerodynamic losses in a low aspect ratio, shrouded axial flow turbine. Journal of Turbomachinery, 123(2), 334–341.

    Article  Google Scholar 

  179. Rosic, B., & Denton, J. D. (2008). Control of shroud leakage loss by reducing circumferential mixing. Journal of Turbomachinery, 130, 21010.

    Article  Google Scholar 

  180. Yang, D., & Feng, Z. (2007). Study on tip leakage flow and heat transfer for a squealer tip blade. Journal of Engineering Thermophysics, 28(6), 936–938.

    Google Scholar 

  181. Booth, T. C., Dodge, P. R., & Hepworth, H. K. (1981). Rotor-tip leakage, Part I—Basic methodology. ASME Paper 81-GT-71.

    Google Scholar 

  182. Camci, C., Dey, D., & Kavurmacioglu, L. (2005). Aerodynamics of tip leakage flows near partial squealer rims in an axial flow turbine stage. Journal of Turbomachinery, 127(1), 14–24.

    Article  Google Scholar 

  183. Kwak, J. S., & Han, J. (2003). Heat transfer coefficients on the squealer tip and near squealer tip regions of a gas turbine blade. Journal of Heat Transfer, 125(4), 669–677.

    Article  Google Scholar 

  184. Nasir, H., Ekkad, S. V., Kontrovitz, D. M., et al. (2004). Effect of tip gap and squealer geometry on detailed heat transfer measurements over a high pressure turbine rotor blade tip. Journal of Turbomachinery, 126(2), 221–228.

    Article  Google Scholar 

  185. Prakash, C., Lee, C. P., Cherry, D., et al. (2005). Analysis of some improve blade tip concepts. ASME Paper GT2005-68333.

    Google Scholar 

  186. Patel, K. V. (1980). Research on a high work axial gas generator turbine. SAE Technical Paper.

    Google Scholar 

  187. Schabowski, Z., & Hodson, H. P. (2007). The reduction of over tip leakage loss in unshrouded axial turbines using winglets and squealers. ASME Paper GT2007-27623.

    Google Scholar 

  188. Zou, ZP., Shao, F., Li, YR., et al. (2017). Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance. Energy, 138, 167–184.

    Google Scholar 

  189. Wheeler, A. P. S., Atkins, N. R., & He, L. (2011). Turbine blade tip heat transfer in low speed and high speed flows. Journal of Turbomachinery, 133, 41025.

    Google Scholar 

  190. Zhang, Q., & He, L. (2013). Tip-shaping for HP turbine blade aerothermal performance management. Journal of Turbomachinery, 135, 51025.

    Article  Google Scholar 

  191. Denton, J. D., & Xu, L. (1990). The trailing edge loss of transonic turbine blades. Journal of Turbomachinery, 112(2), 277–285.

    Article  Google Scholar 

  192. Joly, M. M., Verstraete, T., & Paniagua, G. (2013). Differential evolution based soft optimization to attenuate vane–rotor shock interaction in high-pressure turbines. Applied Soft Computing, 13(4), 1882–1891.

    Article  Google Scholar 

  193. Shi, W. (2011). Numerical and experimental study of cascade flow in turbo-machinery. Beijing: Beihang University.

    Google Scholar 

  194. Jennions, I. K., & Adamczyk, J. J. (1997). Evaluation of the interaction losses in a transonic turbine HP rotor/LP vane configuration. Journal of Turbomachinery, 119(1), 68–76.

    Article  Google Scholar 

  195. Giel, P. W. (2007). NASA/GE highly-loaded turbine research program. NASA Fundamental Aeronautics 2007 Annual Meeting.

    Google Scholar 

  196. Saracoglu, B. H., Paniagua, G., Salvadori, S., et al. (2012). Trailing edge shock modulation by pulsating coolant ejection. Applied Thermal Engineering, 48, 1–10.

    Article  Google Scholar 

  197. Sonoda, T., Arima, T., Olhofer, M., et al. (2004). A study of advanced high-loaded transonic turbine airfoils. Journal of Turbomachinery, 128(4), 650–657.

    Article  Google Scholar 

  198. Joly, M. M., Verstraete, T., & Paniagua, G. (2010). Attenuation of vane distortion in a transonic turbine using optimization strategies: Part I—Methodology. ASME Paper GT2010-22370.

    Google Scholar 

  199. Joly, M. M., Paniagua, G., & Verstraete, T. (2010). Attenuation of vane distortion in a transonic turbine using optimization strategies: Part II—Optimization. ASME Paper GT2010-22371.

    Google Scholar 

  200. Palm, B., & Gardens, F. L. (1999). Neural net-based redesign of a gas generator turbine for improved unsteady aerodynamic performance. AIAA Paper 99-2522.

    Google Scholar 

  201. Rai, M. M., Madavan, N. K., & Huber, F. W. (2000). Improving the unsteady aerodynamic performance of transonic turbines using neural networks. AIAA Paper 2000-0169.

    Google Scholar 

  202. Liu, H. X., An, Y. G., & Zou, Z. P. (2014). Aerothermal analysis of a turbine with rim seal cavity. ASME Paper GT2014-25276.

    Google Scholar 

  203. Bunker, R. S. (2008). The effects of manufacturing tolerances on gas turbine cooling. ASME Paper GT2008-50124.

    Google Scholar 

  204. De la Rosa Blanco, E., & Hodson, H. P. (2006). Effect of the leakage flows and the upstream platform geometry on the endwall flows of a turbine cascade. ASME Paper GT2006-90767.

    Google Scholar 

  205. Turner, M. (1995). Multistage turbine simulation with blade-vortex interaction. ASME Paper 95-GT-288.

    Google Scholar 

  206. McLean, C., Camci, C., & Glezer, B. (2001). Mainstream aerodynamic effects due to wheelspace coolant injection in a high-pressure turbine stage: Part I—Aerodynamic measurements in the stationary frame. Journal of Turbomachinery, 123(4), 687–696.

    Article  Google Scholar 

  207. McLean, C., Camci, C., & Glezer, B. (2001). Mainstream aerodynamic effects due to wheelspace coolant injection in a high-pressure turbine stage: Part II—Aerodynamic measurements in the rotational frame. Journal of Turbomachinery, 123(4), 697–703.

    Article  Google Scholar 

  208. Ong, J., Miller, R. J., & Uchida, S. (2012). The effect of coolant injection on the endwall flow of a high pressure turbine. Journal of Turbomachinery, 134, 51003–51008.

    Article  Google Scholar 

  209. de la Rosa Blanco, E., & Hodson, H. P. (2005). Effect of upstream platform geometry on the endwall flows of a turbine cascade. ASME Paper GT2005-68938.

    Google Scholar 

  210. Blanco, E., La Rosa, De, Hodson, H. P., et al. (2009). Effect of the leakage flows and the upstream platform geometry on the endwall flows of a turbine cascade. Journal of Turbomachinery, 131, 11004–11009.

    Article  Google Scholar 

  211. Schuler, P., Kurz, W., Dullenkopf, K., & Bauer, H. J. (2010). The influence of different rim seal geometries on hot-gas ingestion and total pressure loss in a low-pressure turbine. ASME Paper GT2010-22205.

    Google Scholar 

  212. Schuler, P., Dullenkopf, K., & Bauer, H. J. (2011). Investigation of the influence of different rim seal geometries in a low-pressure turbine. ASME Paper GT2011-45682.

    Google Scholar 

  213. Erickson, R., & Simon, T. W. (2009). Effects of stator/rotor leakage flow and axisymmetric contouring on endwall adiabatic effectiveness and aerodynamic loss. In International Symposium on Heat Transfer in Gas Turbine Systems, August 9–14, Antalya, Turkey.

    Google Scholar 

  214. Zhang, L., & Moon, H. K. (2011). Comparison of two axisymmetric profiles on blade platform film cooling. ASME Paper GT2011-45102.

    Google Scholar 

  215. Zhang, L., Lee, D. H., Yin, J., et al. (2013). The effect of axisymmetric profile on turbine blade platform heat transfer distribution. ASME Paper GT2013-94335.

    Google Scholar 

  216. Popovic, I., & Hodson, H. P. (2010). Aerothermal impact of the interaction between hub leakage and mainstream flows in highly-loaded HP turbine blades. ASME Paper GT2010-22311.

    Google Scholar 

  217. Popović, I., Hodson, H. P., Janke, E., et al. (2013). The effects of unsteadiness and compressibility on the interaction between hub leakage and mainstream flows in high-pressure turbines. Journal of Turbomachinery, 135, 61015.

    Article  Google Scholar 

  218. Popović, I., & Hodson, H. P. (2013). The effects of a parametric variation of the rim seal geometry on the interaction between hub leakage and mainstream flows in high pressure turbines. Journal of Engineering for Gas Turbines and Power, 135, 112501.

    Article  Google Scholar 

  219. Popovíc, I., & Hodson, H. P. (2013). Improving turbine stage efficiency and sealing effectiveness through modifications of the rim seal geometry. Journal of Turbomachinery, 135, 61016.

    Article  Google Scholar 

  220. Göttlich, E. (2011). Research on the aerodynamics of intermediate turbine diffusers. Progress in Aerospace Sciences, 47(4), 249–279.

    Google Scholar 

  221. Axelsson, L., Osso, C. A., Cadrecha, D., et al. (2007). Design performance evaluation and endwall flow structure investigation of an S-shaped intermediate turbine duct. ASME paper GT2007-27650.

    Google Scholar 

  222. Wallin, F., Eriksson, L., & Nilsson, M. (2006). Intermediate turbine duct design and optimization. 25th International Congress of the Aeronautical Sciences.

    Google Scholar 

  223. Wallin, F., & Eriksson, L. (2007). Non-axisymmetric endwall shape optimization of an intermediate turbine duct. ISABE 2007-1300.

    Google Scholar 

  224. Wallin, F., & Eriksson, L. (2008). Design of an aggressive flow-controlled turbine duct. ASME Paper GT2008-51202.

    Google Scholar 

  225. Marn, A., Göttlich, E., Cadrecha, D., et al. (2009). Shorten the intermediate turbine duct length by applying an integrated concept. Journal of Turbomachinery, 131, 041014.

    Article  Google Scholar 

  226. Lavagnoli, S., Yasa, T., Paniagua, G., et al. (2010). Aerodynamic analysis of an innovative low pressure vane placed in a S-shaped duct. ASME Paper GT2010-22546.

    Google Scholar 

  227. Solano, J. P., Pinilla, V., Paniagua, G., et al. (2011). Aero-thermal investigation of a multi-splitter axial turbine. International Journal of Heat and Fluid Flow, 32(5), 1036–1046.

    Article  Google Scholar 

  228. Spataro, R., Göttlich, E., & Lengani, D. (2013). Development of a turning mid turbine frame with embedded design—Part I: Design and steady measurements. ASME paper GT2013-95279.

    Google Scholar 

  229. Griffin, L. W., Huber, F. W., & Sharma, O. P. (1996). Performance improvement through indexing of turbine airfoils: Part 2—Numerical simulation. Journal of Turbomachinery, 118(4), 636–642.

    Article  Google Scholar 

  230. Billiard, N., Paniagua, G., & Dénos, R. (2005). Effect of clocking on the heat transfer distribution of a second stator tested in a one and a half stage HP turbine. ASME Paper GT2005-68462.

    Google Scholar 

  231. Huber, F. W., Johnson, P. D., Sharma, O. P., et al. (1996). Performance improvement through indexing of turbine airfoils: Part1—Experimental investigation. Journal of Turbomachinery, 118(4), 630–635.

    Article  Google Scholar 

  232. König, S., Stoffel, B., & Taher Schobeiri, M. (2009). Experimental investigation of the clocking effect in a 1.5-stage axial turbine—Part I: Time-averaged results. Journal of Turbomachinery, 131, 021003–021003.

    Google Scholar 

  233. Li, H. D., & He, L. (2003). Blade count and clocking effects on three-bladerow interaction in a transonic turbine. Journal of Turbomachinery, 125(4), 632–640.

    Article  Google Scholar 

  234. He, L., Menshikova, V., & Haller, B. R. (2004). Influence of hot streak circumferential length-scale in transonic turbine stage. ASME Paper GT2004-53370.

    Google Scholar 

  235. Ong, J., & Miller, R. J. (2012). Hot streak and vane coolant migration in a downstream rotor. Journal of Turbomachinery, 134, 51002–51010.

    Article  Google Scholar 

  236. Hawthorne, W. R. (1086). Secondary circulation in fluid flow. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1951(206), 374–387.

    MATH  Google Scholar 

  237. Dorney, D. J., & Sondak, D. L. (2000). Effects of tip clearance on hot streak migration in a high-subsonic single-stage turbine. Journal of Turbomachinery, 122(4), 613–620.

    Article  Google Scholar 

  238. Dorney, D. J., Davis, R. L., Edwards, D. E., et al. (1992). Unsteady analysis of hot streak migration in a turbine stage. Journal of Propulsion and Power, 8(2), 520–529.

    Article  Google Scholar 

  239. Khanal, B., He, L., Northall, J., et al. (2013). Analysis of radial migration of hot-streak in swirling flow through high-pressure turbine stage. Journal of Turbomachinery, 135, 041005.

    Article  Google Scholar 

  240. Dorney, D. J., & Gundy-Burlet, K. (1996). Hot-streak clocking effects in a 1-1/2 stage turbine. Journal of Propulsion and Power, 12(3), 619–620.

    Article  Google Scholar 

  241. Howell, R. J., Hodson, H. P., Schulte, V., et al. (2002). Boundary layer development in the BR710 and BR715 LP turbines—The implementation of high-lift and ultra-high-lift concepts. Journal of Turbomachinery, 124(3), 385–392.

    Article  Google Scholar 

  242. Coull, J. D., Thomas, R. L., & Hodson, H. P. (2008). Velocity distributions for low pressure turbines. ASME Paper GT2008-50589.

    Google Scholar 

  243. Ulizar, I., & González, P. (2001). Aerodynamic design for a new five stage low pressure turbine for the Rolls-Royce Trent 500 Turbofan. ASME Paper 2001-GT-440.

    Google Scholar 

  244. Haselbach, F., Schiffer, H., & Horsman, M. (2002). The application of ultra high lift blading in the BR715 LP turbine. Journal of Turbomachinery, 124(3), 45–51.

    Article  Google Scholar 

  245. Hodson, H. P., & Howell, R. J. (2005). Bladerow interactions, transition, and high-lift aerofoils in low-pressure turbines. Annual Review of Fluid Mechanics, 37, 71–98.

    Article  MATH  Google Scholar 

  246. Flegel-McVetta, A. B., Giel, P. W., & Welch, G. E. (2013). Aerodynamic measurements of a variable-speed power-turbine blade section in a transonic turbine cascade at low inlet turbulence. NASA TM-218069.

    Google Scholar 

  247. Rajiv, S., Rohinton, I., Mahadevan, B., et al. (2004). High fidelity system simulation of aerospace vehicles using NPSS. AIAA-2004-371.

    Google Scholar 

  248. Deng, Q. (2013). Investigation of turbine pressure controlled vertex design technology. Harbin: Harbin Engineering University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Zou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zou, Z., Wang, S., Liu, H., Zhang, W. (2018). Aerodynamic Design Technologies for Turbines. In: Axial Turbine Aerodynamics for Aero-engines. Springer, Singapore. https://doi.org/10.1007/978-981-10-5750-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5750-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5749-6

  • Online ISBN: 978-981-10-5750-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics