Skip to main content

Flow Mechanisms in Low-Pressure Turbines

  • Chapter
  • First Online:
Axial Turbine Aerodynamics for Aero-engines

Abstract

In aircraft engine, the main task for low pressure turbine (LP turbine, LPT) is to drive rotational components, for example the fan or booster stages. It also can be used as direct power output apparatus, which provides shaft power to drive a propeller, fan, or other lift or thrust equipment. In turboprop and turboshaft engine, LP turbine is also known as power turbine or free turbine. In the spatial position of the flow path, LP turbine locates behind the high pressure turbine (HP turbine, HPT). Between the HP turbine and LP turbine in the high bypass ratio (BPR) turbofan engines, there usually arranges the bearing freamework known as the inter-turbine ducts, and turbine rear frame (TRF) ducts which is connecting to outlet nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Smith, S. F., & Afraes, M. A. (1965). A simple correlation of turbine efficiency. Journal of Royal Aeronautical Society, 69, 467–470.

    Article  Google Scholar 

  2. Mayle, R. E. (1991). The role of laminar-turbulent transition in gas turbine engines. Journal of Turbomachinery, 113(4), 509–536.

    Article  Google Scholar 

  3. Hodson, H. P., & Howell, R. J. (2005). Bladerow interactions, transition, and high-lift aerofoils in low-pressure turbines. Annual Review of Fluid Mechanics, 37, 71–98.

    Article  MATH  Google Scholar 

  4. Zou, Z., Jian, Ye J., Huoxing, Liu H., et al. (2007). Research progress on low pressure turbine internal flows and related aerodynamic design. Advances in mechanics, 37(4), 551–562.

    Google Scholar 

  5. Howell, R. J., Ramesh, O. N., Hodson, H. P., et al. (2001). High lift and aft loaded profiles for low pressure turbines. Journal of Turbomachinery, 123(2), 181–188.

    Article  Google Scholar 

  6. Denton, J. D. (1993). Loss mechanisms in turbomachines. Journal of Turbomachinery, 115(4), 621–656.

    Article  Google Scholar 

  7. Curtis, E. M., Hodson, H. P., & Banieghbal, M. R, et al. (1997). Development of blade profiles for low-pressure turbine applications. Journal of Turbomachinery, 119(3), 531–538.

    Google Scholar 

  8. Rosic, B., & Denton, J. D. (2008). Control of shroud leakage loss by reducing circumferential mixing. Journal of Turbomachinery, 130, 021010.

    Article  Google Scholar 

  9. Brear, M. J., Gonzalez, P., Harvey, N. W., et al. (2002). Pressure surface separations in low pressure turbines—Part 2: interactions with the secondary flow. Journal of Turbomachinery, 124(3), 402–409.

    Article  Google Scholar 

  10. Wisler, D. C. (1998). The technical and economic relevance of understanding boundary layer transition in gas turbine engines, Minnowbrook II, 1997 workshop on boundary layer transition inturbomachines. NASA CP-206958, 1998.

    Google Scholar 

  11. Zou, Z., Kun, Zhou K., Peng, Wang P., et al. (2012). Research progress on flow mechanism and aerodynamic design method of high-bypass-ratio engine turbine. Aeronautical Manufacturing Technology, 27(13), 49–54.

    Google Scholar 

  12. Hodson, H. P., & Howell, R. J. (2005). The role of transition in high-lift low-pressure turbines for aeroengines. Progress in Aerospace Sciences, 41(6), 419–514.

    Article  Google Scholar 

  13. Howell, R. J., Hodson, H. P., Schulte, V., et al. (2002). Boundary layer development in the BR710 and BR715 LP turbines-the implementation of high lift and ultra high lift concepts. Journal of Turbomachinery, 124(3), 385–392.

    Article  Google Scholar 

  14. Weber S, & Hackenberg, H. P. (2007). GP7000: MTU aero engines’ contribution in a successful partnership. ISABE Paper 2007–1283, 2007.

    Google Scholar 

  15. Praisner, T. J, Grover, E. A., & Knezevici, D. C., et al. (2008) Toward the expansion of low-pressure-turbine airfoil design space. ASME Paper 2008-GT-50898.

    Google Scholar 

  16. Goodhand, M. N., & Miller, R. J. (2010). The impact of real geometries on three-dimensional separations in compressors. ASME Paper GT2010–22246.

    Google Scholar 

  17. Garzon, V. E., & Darmofal, D. L. (2003). Impact of geometric variability on axial compressor performance. Journal of Turbomachinery, 125(4), 692–703.

    Article  Google Scholar 

  18. Zhang, W., Zou, Z., Liu, H., et al. (2010). Effect of profile deviation on turbine performance in whole engine environment. Journal of Engineering Thermophysics, 31(11), 1830–1834.

    Google Scholar 

  19. Zhang, W., Zou, Z., Li, W., et al. (2010). Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance. Acta aeronautica et astronautica sinica, 31(11), 2130–2138.

    Google Scholar 

  20. Morkovin, M. V. (1993). Bypass-Transition Research: Issues and Philosophy. Instabilities and Turbulence in Engineering Flows (pp. 3–30). Netherlands: Springer.

    Book  Google Scholar 

  21. Morkovin, M. V., Reshotko, E., & Herbert, T. (1994). Transition in open flow systems-a reassessment. The Bulletin of the American Physical Society, 39(9), 1882.

    Google Scholar 

  22. White, F. M. (1991). Viscous fluid flow (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  23. Goldstein, M. E., & Hultgren, L. S. (1989). Boundary-layer receptivity to long-wave free-stream disturbances. Annual Review of Fluid Mechanics, 21, 137–166.

    Article  MathSciNet  MATH  Google Scholar 

  24. Saric, W. S., Reed, H. L., & Kerschen, E. J. (2002). Boundary-layer receptivity to freestream disturbances. Annual Review of Fluid Mechanics, 34, 291–319.

    Article  MathSciNet  MATH  Google Scholar 

  25. Boiko, A. V., Grek, G. R., Dovgal, A. V., et al. (2002). The origin of turbulence in near-wall flows. Berlin: Springer.

    Book  MATH  Google Scholar 

  26. Matsubara, M., & Alfredsson, P. H. (2001). Disturbance growth in boundary layers subjected to free-stream turbulence. Journal of Fluid Mechanics, 430, 149–168.

    Article  MATH  Google Scholar 

  27. Jacobs, R. G., & Durbin, P. A. (2001). Simulations of bypass transition. Journal of Fluid Mechanics, 428, 185–212.

    Article  MATH  Google Scholar 

  28. Zaki, T., & Durbin, P. A. (2005). Mode interaction and the bypass route to transition. Journal of Fluid Mechanics, 531, 85–111.

    Article  MathSciNet  MATH  Google Scholar 

  29. Zaki, T., & Durbin, P. A. (2006). Continuous mode transition and the effects of pressure gradient. Journal of Fluid Mechanics, 563, 357–388.

    Article  MathSciNet  MATH  Google Scholar 

  30. Durbin, P., & Wu, X. (2007). Transition beneath vortical disturbances. Annual Review of Fluid Mechanics, 39, 107–128.

    Article  MathSciNet  MATH  Google Scholar 

  31. Krishnan, L., & Sandham, N. D. (2006). Effect of Mach number on the structure of turbulent spots. Journal of Fluid Mechanics, 566, 225–234.

    Article  MATH  Google Scholar 

  32. Wygnanski, I., Sokolov, M., & Friedman, D. (1976). On a turbulent ‘spot’ in a laminar boundary layer. Journal of Fluid Mechanics, 78, 785–819.

    Article  Google Scholar 

  33. Chen, C. P., & Blackwelder, R. (1978). Large-scale motion in a turbulent boundary layer: a study using temperature contamination. Journal of Fluid Mechanics, 89(2), 1–31.

    Article  MATH  Google Scholar 

  34. Gad-el-Hak, M., Blackwelder, R. F., & Riley, R. J. (1981). On the growth of turbulent regions in laminar boundary layers. Journal of Fluid Mechanics, 110, 73–95.

    Article  Google Scholar 

  35. Krishnan, L., & Sandham, N. D. (2006). On the merging of turbulent spots in a supersonic boundary-layer flow. International Journal of Heat and Fluid Flow, 27(4), 542–550.

    Article  Google Scholar 

  36. Savas, O., & Coles, D. E. (1985). Coherence measurements in synthetic turbulent boundary layers. Journal of Fluid Mechanics, 160, 421–446.

    Article  Google Scholar 

  37. Makita, H., & Nishizawa, A. (2001). Characteristics of internal vortical structures in a merged turbulent spot. Journal of Turbulence, 2(1), 1–14.

    Google Scholar 

  38. Horton, H. P. (1968). Laminar separation in two and three-dimensional incompressible flow. London: University of London.

    Google Scholar 

  39. Roberts, W. B. (1980). Calculation of laminar separation bubbles and their effect on airfoil performance. AIAA Journal, 18(1), 25–31.

    Article  Google Scholar 

  40. Hatman, A., & Wang, T. (1999). A prediction model for separated-flow transition. Journal of Turbomachinery, 121(3), 594–602.

    Article  Google Scholar 

  41. Watmuff, J. H. (1999). Evolution of a wave packet into vortex loops in a laminar separation bubble. Journal of Fluid Mechanics, 397, 119–169.

    Article  MathSciNet  MATH  Google Scholar 

  42. Roberts, S. K., & Yaras, M. I. (2006). Effects of surface roughness geometry on separation-bubble transition. Journal of Turbomachinery, 128(2), 349–356.

    Article  Google Scholar 

  43. Rist, U., & Maucher, U. (2002). Investigations of time-growing instabilities in laminar separation bubbles. European Journal of Mechanics B/Fluids, 21(5), 495–509.

    Article  MATH  Google Scholar 

  44. Alam, M., & Sandham, N. D. (2000). Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. Journal of Fluid Mechanics, 403, 223–250.

    Article  MATH  Google Scholar 

  45. Roberts, S. K., & Yaras, M, I. (2004) Boundary-layer transition in separation bubbles over rough surfaces. ASME Paper GT2004– 53667.

    Google Scholar 

  46. McAuliffe, B. R., & Yaras, M. I. (2006). Numerical study of instability mechanisms leading to transition in separation bubbles. ASME Paper GT2006-91018.

    Google Scholar 

  47. McAuliffe B R, Yaras M I. Transition mechanisms in separation bubbles under low and elevated freestream turbulence. ASME Paper GT2007-27605, 2007.

    Google Scholar 

  48. Spalart, P. R., & Strelets, M. K. (2000). Mechanisms of transition and heat transfer in a separation bubble. Journal of Fluid Mechanics, 403, 329–349.

    Article  MATH  Google Scholar 

  49. Yang, Z., & Voke, P. R. (2001). Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. Journal of Fluid Mechanics, 439, 305–333.

    Article  MATH  Google Scholar 

  50. Ye, J. (2008). Large-eddy simulation of blade boundary layer spatio-temporal evolution under unsteady disturbances. Beijing: Beihang University.

    Google Scholar 

  51. Zhong, S., Kittichaikarn, C, Hodson, H. P., et al. (1998). A Study of Unsteady Wake-Induced Boundary Layer Transition with Thermochromic Liquid Crystals. International Conference on Optical Methods and Data Processing in Heat and Fluid Flow. London: IMechE Press.

    Google Scholar 

  52. Zou, Z., & Yun Liang, Y. (2012). Study on flow mechanism and characteristics of boundary layer in high loading LP turbine blade. Research Report.

    Google Scholar 

  53. Wu, X., Jacobs, R. G., Hunt, J. C. R., et al. (1999). Simulation of boundary layer transition induced by periodically passing wakes. Journal of Fluid Mechanics, 398, 109–153.

    Article  MATH  Google Scholar 

  54. Ye, J., & Zou, Z. (2007). Large-eddy simulation of periodic wake/laminar separation bubble interaction under low Reynolds number conditions. Journal of Engineering Thermophysics, 28(2), 215–218.

    Google Scholar 

  55. Li, W., Zhu, J., Li, G., et al. (2011). Experimental research on boundary layer behaviors of ultra-high-lift low-pressure turbine profile based on surface-mounted hot-film. Journal of Aerospace Power, 26(1), 115–121.

    Google Scholar 

  56. Volino, R. J. (2004). Separated flow transition mechanism and prediction with high and low freestream turbulence under low pressure turbine conditions. ASME Paper GT2004-53360.

    Google Scholar 

  57. Volino, R. J. (2002). Separated flow transition under simulated low-pressure turbine airfoil conditions: Part 1-mean flow and turbulence statistics. Journal of Turbomachinery, 124(4), 645–655.

    Article  Google Scholar 

  58. Volino, R. J. (2002). Separated flow transition under simulated low-pressure turbine airfoil conditions: Part 2-turbulence spectra. Journal of Turbomachinery, 124(4), 656–664.

    Article  Google Scholar 

  59. Ibrahim, M., Kartuzova, O., & Volino, R. J. (2008). Experimental and computational investigations of separation and transition on a highly loaded low pressure turbine airfoil: Part 1-low freestream turbulence intensity. ASME Paper IMECE 2008-68879.

    Google Scholar 

  60. Volino, R. J., Kartuzova, O., & Ibrahim, M. (2008). Experimental and computational investigations of separation and transition on a highly loaded low pressure turbine airfoil: Part 2-high freestream turbulence intensity. ASME Paper IMECE 2008-68776.

    Google Scholar 

  61. Stadtmüller, P. (2001). Investigation of wake-induced transition on the LP turbine cascade T106D-EIZ, test case documentation version 1.1. München: Universität der Bundeswehr München.

    Google Scholar 

  62. Stadtmüller, P., & Fottner, L. (2001). A test case for the numerical investigation of wake passing effects on a highly loaded LP turbine cascade blade. ASME Paper 2001GT-0311.

    Google Scholar 

  63. Zhang, W. (2013). Studies on flow mechanisms and aerodynamic design of low-pressure turbine. Beijing: Beihang University.

    Google Scholar 

  64. Zhang, W., Zou, Z., Lei, Q., Ye, J., & Lei, W. (2015). Effects of freestream turbulence on separated boundary layer in a low-re high-lift LP turbine blade. Computers & Fluids, 109, 1–12.

    Article  MathSciNet  Google Scholar 

  65. Zhang, W., Zou, Z., Zhang, H., & Ye, J. Eddy simulations of separated shear layer behaviors in a high-lift LP turbine. ASME paper GT2015-43054.

    Google Scholar 

  66. Liu, Z., Ye, J., & Zou, Z. (2013). Large-eddy simulation of separated boundary layer transition in low-pressure turbine cascade with and without wakes. Journal of aerospace power, 28(12), 2803–2812.

    Google Scholar 

  67. Ho, C., & Huerre, P. (1984). Perturbed free shear layers. Annual Review of Fluid Mechanics, 16, 365–424.

    Article  Google Scholar 

  68. McAuliffe, B. R., & Yaras, M. I. (2005) Separation-bubble transition measurements on a low-Re airfoil using particle image velocimetry. ASME Paper GT2005-68663.

    Google Scholar 

  69. Muti Lin, J. C., & Pauley, L. L. (1996). Low-Reynolds-number separation on an airfoil. AIAA Journal, 34(8), 1570–1577.

    Article  MATH  Google Scholar 

  70. Talan, M., & Hourmouziadis, J. (2002). Characteristic regimes of transitional separation bubbles in unsteady flow. Flow, Turbulence and Combustion, 69(3–4), 207–227.

    Article  MATH  Google Scholar 

  71. Luo, H. (2009). Numerical and experimental investigations on aerodynamic issues of highly-loaded blading design in low-pressure turbine. Xi’an: Northwestern Polytechnical University.

    Google Scholar 

  72. Meyer, R. X. (1958). The effects of wakes on the transient pressure and velocity distributions in turbomachines. Journal of Basic Engineering, 80(7), 1544–1552.

    Google Scholar 

  73. Smith, L. H. (1966). Wake dispersion in turbomachines. Journal of Basic Engineering, 88(3), 688–690.

    Article  Google Scholar 

  74. Stieger, R. D., & Hodson, H. P. (2004). The unsteady development of a turbulent wake through a downstream low-pressure turbine blade passage. ASME Paper GT2004-53061.

    Google Scholar 

  75. Howell, R. J. (1999). Wake separation bubble interactions in low Reynolds number turbomachinery. UK: Cambridge University.

    Google Scholar 

  76. Stieger, R. D. (2002). The effects of wakes on separating boundary layers in low pressure turbines. UK: Cambridge University.

    Google Scholar 

  77. Zhang, X. F. (2005). Separation and transition control on ultra-high-lift low pressure turbine blades in unsteady flow. UK: Cambridge University.

    Google Scholar 

  78. Halstead, D. E., Wisler, D. C., Okiishi, T. H., et al. (1997). Boundary layer development in axial compressors and turbines: Part 1 of 4 composite picture. Journal of Turbomachinery, 119(1), 114–127.

    Article  Google Scholar 

  79. Halstead, D. E., Wisler, D. C., Okiishi, T. H., et al. (1997). Boundary layer development in axial compressors and turbines: Part 2 of 4 compressors. Journal of Turbomachinery, 119(3), 426–444.

    Article  Google Scholar 

  80. Halstead, D. E., Wisler, D. C., Okiishi, T. H., et al. (1997). Boundary layer development in axial compressors and turbines: Part 3 of 4 LP turbines. Journal of Turbomachinery, 119(2), 225–237.

    Article  Google Scholar 

  81. Halstead, D. E., Wisler, D. C., Okiishi, T. H., et al. (1997). Boundary layer development in axial compressors and turbines: Part 4 of 4 computations andanalyses. Journal of Turbomachinery, 119(1), 128–139.

    Article  Google Scholar 

  82. Schulte, V., & Hodson, H. P. (1996). Unsteady wake-Induced boundary layer transition in high lift LP turbines. ASME Paper 96-GT-486.

    Google Scholar 

  83. Dong, Y., & Cumpsty, N. A. (1990). Compressor blade boundary layers: Part 2-measurements with incident wakes. Journal of Turbomachinery, 112(2), 231–240.

    Article  Google Scholar 

  84. Hodson, H. P. (1985). An inviscid blade-to-blade prediction of a wake-generated unsteady flow. Journal of Engineering for Gas Turbines and Power, 107(2), 337–343.

    Article  Google Scholar 

  85. Stieger, R. D., & Hodson, H. P. (2003). Unsteady dissipation measurements on a flat plate subject to wake passing. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(4), 413–419.

    Google Scholar 

  86. Hodson, H. P., & Howell, R. J. (2000). Unsteady flow: Its role in the low pressure turbine. In:9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Lyon, France.

    Google Scholar 

  87. Stieger, R. D., & Hodson, H. P. (2003). The transition mechanism of highly-loaded LP turbine blades. ASME Paper GT2003-38304.

    Google Scholar 

  88. Stieger, R. D., Hollis, D., Hodson, H. P. (2003). Unsteady surface pressures due to wake-induced transition in a laminar separation bubble on a LP turbine cascade. ASME Paper GT2003-38303.

    Google Scholar 

  89. Vera, M., Hodson, H. P., & Vasquez, R. (2004). The effects of roughness and unsteadiness on a high speed highly loaded low-pressure turbine blade. ASME Paper GT2004-53822.

    Google Scholar 

  90. Zhang, X. F., & Hodson, H. P. (2004). The combined effects of surface trips and unsteady wakes on the boundary layer development of an ultra-high-lift LP turbine blade. ASME Paper GT2004-53081.

    Google Scholar 

  91. Chun, S., & Sung, H. J. (2003). Large-scale vortical structure of turbulent separation bubble affected by unsteady wake. Experiments in Fluids, 34(5), 572–584.

    Article  Google Scholar 

  92. Zhang, W. H., Zou, Z. P., Ye, J., et al. (2012). Effects of periodic wakes and freestream turbulence on coherent structures in low-pressure turbine boundary layer. ASME Paper GT2012-69061, 2012.

    Google Scholar 

  93. Li, W. (2012). Investigation on the boundary layer characteristics on ultra-high-lift low-pressure turbine airfoils under steady flow and unsteady wakes. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences.

    Google Scholar 

  94. Liang, Y., Zou, Z., Liu, H., & Zhang, W. (2015). Experimental investigation on the effects of wake passing frequency on boundary layer transition in high-lift low-pressure turbines. Experiments in Fluids, 56(4), 1–13.

    Article  Google Scholar 

  95. Volino, R. J. (2012). Effect of unsteady wakes on boundary layer separation on a very high lift low pressure turbine airfoil. Journal of Turbomachinery, 134, 011011.

    Article  Google Scholar 

  96. Binder, A., Schroder, T., & Hourmouziadis, J. (1989). Turbulence measurements in a multistage low-pressure turbine. Journal of Turbomachinery, 111(2), 153–161.

    Article  Google Scholar 

  97. Schroder, X. (1991). Investigations of blade row interaction and boundary layer transition phenomena in a multistage aeroengine low pressure turbine by measurements with hot-filmprobes and surface-mounted hot-film gauges. Lecture Series-Von Karman Institute for Fluid Dynamics.

    Google Scholar 

  98. Arndt, N. (1991). Blade row interaction in a multistage low pressure turbine. ASME Paper 91-GT-283.

    Google Scholar 

  99. Halstead D. E. (1997). Flowfield unsteadiness and turbulence in multistage low pressure turbines. In Proceedings of the Conference on Boundary Layer Transition in Turbomachines. Minnowbrook: Syracuse Universit.

    Google Scholar 

  100. Hodson, H. P., Huntsman, I., & Steele, A. B. (1994). An investigation of boundary layer development in a multistage LP turbine. Journal of Turbomachinery, 116(3), 375–383.

    Article  Google Scholar 

  101. Huber, F. W., Sharma, O. P., Gaddis, S. W., et al. (1996). Performance improvement through indexing of turbine airfoils: Part 1-experimental investigation. Journal of Turbomachinery, 118(4), 630–635.

    Article  Google Scholar 

  102. Griffin, L. W., Huber, F. W., & Sharma, O. P. (1996). Performance improvement through indexing of turbine airfoils: Part 2-numerical simulation. Journal of Turbomachinery, 118(4), 636–642.

    Article  Google Scholar 

  103. Engber, M., & Fottner, L. (1996). The effect of incoming wakes on boundary layer transition of a highly loaded turbine cascade. In AGARD Conference Proceedings.

    Google Scholar 

  104. Eulitz, F., & Engel, K. (1998). Numerical investigations of wake interactions in a low pressure turbine and its influence on loss mechanisms. ASME Paper 98-GT-563.

    Google Scholar 

  105. Miller, R. J., Moss, R. W., & Ainsworth, R. W., et al. (2000). Wake shock and potential field interactions in a 1.5 stage turbine: Part 1- vane-vane interaction and discussion of results. ASME Paper 2000-GT-30436.

    Google Scholar 

  106. Li, H. D., & He, L. (2003). Blade count and clocking effects on three blade row interaction in a transonic turbine. Journal of Turbomachinery, 125(4), 632–640.

    Article  Google Scholar 

  107. Kusterer, K., Moritz, N., Bohn, D., et al. (2010). Transient numerical investigation of rotor clocking in 1.5 stage of an axial test turbine with a blade-to-vane ratio of 1.5. ASME Paper GT2010-22902.

    Google Scholar 

  108. Arnone, A., Marconcini, M., Pacciani, R., et al. (2002). Numerical investigation of airfoilclocking in a three-stage low-pressure turbine. Journal of Turbomachinery, 124(1), 61–68.

    Article  Google Scholar 

  109. Höhn, W., & Heinig, K. (2000). Numerical and experimental investigation of unsteady flow interaction in a low pressure multistage turbine. Journal of Turbomachinery, 122(4), 628–633.

    Article  Google Scholar 

  110. Nayeri, C., & Höhn, W. (2003). Numerical study of the unsteady blade row interaction in a three-stage low pressure turbine. ASME Paper GT2003-38822.

    Google Scholar 

  111. König, S., & Stoffel, B. (2007). On the applicability of aspoked-wheel wake generator for clocking investigations. Journal of Turbomachinery, 129(11), 1468–1477.

    Google Scholar 

  112. König, S., Stoffel, B., & Schobeiri, M. T. (2009). Experimental investigation of the clocking effect in a 1.5-stage axial turbine—Part 1-time-averaged results. Journal of Turbomachinery, 131, 021003.

    Article  Google Scholar 

  113. König, S., Stoffel, B., & Schobeiri, M. T. (2009). Experimental investigation of the clocking effect in a 1.5-stage axial turbine—Part 2-unsteady results and boundary layer behavior. Journal of Turbomachinery, 131, 021004.

    Article  Google Scholar 

  114. Behr, T., Porreca, L., Mokulys, T., et al. (2005). Multistage aspects and unsteady effects of stator and rotor clocking in an axial turbine with low aspect ratio blading. Journal of Turbomachinery, 128(1), 11–22.

    Article  Google Scholar 

  115. Schennach, O., Woisetschläger, J., Fuchs, A., et al. (2007). Experimental investigations of clocking in a one and a halfs tage transonic turbine using Laser-Doppler-Velocimetry and a fast response aerodynamics pressure probe. Journal of Turbomachinery, 129(2), 372–381.

    Article  Google Scholar 

  116. Schennach, O., Pecnik, R., Paradiso, B., et al. (2008). The effect of vane clocking on the unsteady flowfield in a one-and-a-half stage transonic turbine. Journal of Turbomachinery, 130, 031022.

    Article  Google Scholar 

  117. Dawes, W. N. (1990). A comparison of zero and one equation turbulence models for turbomachinery calculations. ASME Paper 90-GT-303.

    Google Scholar 

  118. Schlichting, H. (1966). Boundary layer theory (6th ed.). New York: McGraw-Hill Book Company.

    MATH  Google Scholar 

  119. Denton, J. D., & Cumpsty, N. A. (1987). Loss mechanisms in turbomachines. IMechE Paper C260/87.

    Google Scholar 

  120. Truckenbrodt, E. (1955). A method of quadrature for calculation of the laminar and turbulent boundary layer in case of plane and rotationally symmetrical flow. NASA TM 1379.

    Google Scholar 

  121. Dong, Y., & Cumpsty, N. A. (1989). Compressor blade boundary layers, Part 1- test facility and measurements with no incident wakes. ASME Paper 89-GT-50.

    Google Scholar 

  122. Dong, Y, & Cumpsty, N. A. (1989). Compressor blade boundary layers, Part 2-measurements with incident wakes. ASME Paper 89-GT-51.

    Google Scholar 

  123. Addison, J. S. (1990). Wake-boundary layer interaction in axial turbomachinery. UK: Cambridge University.

    Google Scholar 

  124. Addison, J. S., & Hodson, H. P. (1992). Modelling of unsteady transitional boundary layers. Journal of Turbomachinery, 114(3), 580–589.

    Article  Google Scholar 

  125. Speidel, L. (1952). ‘Beeinflussung der laminaren grenzschicht durch periodische störung der zuströmung. Z. Flugwiss, 5(9), 270–275.

    Google Scholar 

  126. Hodson, H. P. (1984). Measurements of wake-generated unsteadiness in the rotor passages of axial flowturbines. ASME Paper 84-GT-116.

    Google Scholar 

  127. Hodson, H. P., Addison, J. S., & Shepherdson, C. A. (1992). Models for unsteady wake-induced transition in axial turbomachines. Journal Physique III, 2(4), 545–574.

    Article  Google Scholar 

  128. Vilmin, S., Hodson, H. P., Dawes, W. N., et al. (2003) Predicting wake-passing transition in turbomachinery using an inter-mittency-conditioned modelling approach. AIAA Paper 2003-3995.

    Google Scholar 

  129. Narasimha, R. (1985). The laminar-turbulent transition zone in the boundary layer. Progress in Aerospace Sciences, 22(1), 29–80.

    Article  Google Scholar 

  130. Gostelow, J. P., & Dey, A. R. (1991). Spot formation rates—Transitional boundary layers under zero and adverse pressure gradients. R. Ae. Soc. Conf. Boundary Layer Transition and Control, UK: Cambridge.

    Google Scholar 

  131. Mayle, R. E., Dullenkopf K. A. (1989) Theory for wake-induced transition. ASME Paper 89-GT-57.

    Google Scholar 

  132. Mayle, R. E., & Dullenkopf, K. (1990). More on the turbulent-strip theory for wake-induced transition. ASME Paper 90-GT-137.

    Google Scholar 

  133. Narasimha, R. (1957). On the distribution of intermittency in the transition region of a boundary layer. Journal of the Aeronautical Sciences, 24(9), 711–712.

    Google Scholar 

  134. Denton, J. D., & Johnson, C. G. (1976). An experimental study of the tip leakage flow around shrouded turbine blades. CEGB Report R/M/N848.

    Google Scholar 

  135. Pfau, A., Treiber, M., Sell, M., et al. (2001). Flow interaction from the exit cavity of an axial turbine blade row labyrinth seal. Journal of Turbomachinery, 123(2), 342–352.

    Article  Google Scholar 

  136. Wolter, K., Giboni, A., Peters, P., et al. (2005). Experimental and numerical investigation of the unsteady leakage flow through the rotor tip labyrinth of a 1.5-stage axial turbine. ASME Paper GT2005-68156.

    Google Scholar 

  137. Rosic, B., Denton, J. D., & Curtis, E. M. (2008). The influence of shroud and cavity geometry on turbine performance: An experimental and computational study-Part 1: Shroud geometry. Journal of Turbomachinery, 130, 041001.

    Article  Google Scholar 

  138. Pfau, A., Schlienger, J., Rusch, D., et al. (2005). Unsteady flow interactions within the inlet cavity of a turbine rotor tip labyrinth seal. Journal of Turbomachinery, 127(4), 679–688.

    Article  Google Scholar 

  139. Axel, P. (2003). Loss mechanisms in labyrinth seals of shrouded axial turbines. Zurich: Swiss Federal Institute of Technology Zurich.

    Google Scholar 

  140. Rosic, B., Denton, J. D., & Pullan, G. (2006). The importance of shroud leakage modeling in multistage turbine flow calculations. Journal of Turbomachinery, 128(4), 669–678.

    Article  Google Scholar 

  141. Giboni, A., Wolter, K., Menter, J. R., et al. (2004). Experimental and numerical investigation into the unsteady interaction of labyrinth seal leakage flow and main flow in a 1.5-stage axial turbine. ASME Paper GT2004-53024.

    Google Scholar 

  142. Anker, J. E., Mayer, J. F., & Casey, M. V. (2005). The impact of rotor labyrinth seal leakage flow on the loss generation in an axial turbine. Proceedings of the IMechE, Part A: Journal of Power and Energy, 219(6), 481–490.

    Article  Google Scholar 

  143. Porreca, L., Behr, T., Schlienger, J., et al. (2005). Fluid dynamics and performance of partially and fully shrouded axial turbines. Journal of Turbomachinery, 127(4), 668–678.

    Article  Google Scholar 

  144. Giboni, A., Menter, J. R., Peters, P., et al. (2003). Interaction of labyrinth seal leakage flow and main flow in an axial turbine. ASME Paper GT2003-38722.

    Google Scholar 

  145. Peters, P., Menter, J. R., Pfost, H., et al. (2005). Unsteady interaction of labyrinth seal leakage flow and downstream stator flow in a shrouded 1.5-stage axial turbine. ASME Paper GT2005-68065.

    Google Scholar 

  146. Wallis, A. M., Denton, J. D., & Demargne, A. A. J. (2001). The control of shroud leakage flows to reduce aerodynamic losses in a low aspect ratio, shrouded axial flow turbine. Journal of Turbomachinery, 123(2), 334–341.

    Article  Google Scholar 

  147. Yoon, S., Curtis, E., Denton, J., et al. (2013). The effect of clearance on shrouded and unshrouded turbines at two levels of reaction. Journal of Turbomachinery, 136, 021013.

    Article  Google Scholar 

  148. Bohn, D. E., Balkowski, I., Ma, H., et al. (2003). Influence of open and closed shroud cavities on the flow field in a 2-stage turbine with shrouded blades. ASME Paper GT2003-38436.

    Google Scholar 

  149. Bohn, D. E., Krewinkel, R., Tummers, C., et al. (2006). Influence of the radial and axial gap of the shroud cavities on the flow field in a 2-stage turbine. ASME Paper GT2006-90857.

    Google Scholar 

  150. Peters, P., Breisig, V., Giboni, A., et al. (2000). The Influence of the clearance of shrouded rotor blades on the development of the flow field and losses in the subsequent stator. ASME Paper GT2000-0478.

    Google Scholar 

  151. Wittig, S. L. K., Dorr, L., & Kim, S. (1983). Scaling effects on leakage losses in labyrinth seals. Journal for Engineering for Power, 105(2), 305–309.

    Article  Google Scholar 

  152. Martin, H. M. (1908). Labyrinth packing. Engineering, 85, 35–36.

    Google Scholar 

  153. Karl, T. (1986). Non contact seal: principle and application of clearance seal and labyrinth seal (Li J. et al., Trans.). Beijing: China Machine Press.

    Google Scholar 

  154. Vermes, G. A. (1961). A fluid mechanics approach to the labyrinth seal leakage problem. Journal of Engineering Power, 83(2), 161–169.

    Article  Google Scholar 

  155. Rhode, D. L., & Allen, B. F. (2001). Measurement and visualization of leakage effects of rounded teeth tips and rub-grooves on stepped labyrinths. Journal of Engineering for Gas Turbines and Power, 123(3), 604–611.

    Article  Google Scholar 

  156. Zhu, G. Analysis of leakage character of a labyrinth piston compressor. Nanjing: Nanjing University of Aeronautics and Astronautics.

    Google Scholar 

  157. Rosic, B., Denton, J. D., & Pullan, G. (2006). The importance of shroud leakage modeling in multistage turbine flow calculations. Journal of Turbomachinery, 128(4), 699–707.

    Article  Google Scholar 

  158. Gier, J., Engel, K., Stubert, B., et al. (2006). Modeling and analysis of main flow-shroud leakage flow interaction in LP turbines. ASME Paper GT2006-90773.

    Google Scholar 

  159. Hunter, K. D. &, Manwarningm, S. R. (2000). Endwall cavity flow effects on gas path aerodynamics in an axial flow turbine: Part 2-source term model development. ASME Paper GT2000-513.

    Google Scholar 

  160. Wang, P. (2014). Investigations on multi-fidelity coupled method and its applications for flow simulation. Beijing: Beihang University.

    Google Scholar 

  161. Zou, Z., Liu, J., Zhang, W., & Wang, P. (2016). Shroud leakage flow models and a multi-dimensional coupling CFD method for shrouded turbines. Energy, 103, 410–429.

    Article  Google Scholar 

  162. Gier, J., Stubert, B., Brouillet, B., et al. (2003). Interaction of shroud leakage flow and main flow in a three-stage LP turbine. ASME Paper No. 2003-GT-38025.

    Google Scholar 

  163. Gao, J., Zheng, Q., Yue, G., et al. (2012). Control of shroud leakage flows to reduce mixing losses in a shrouded axial turbine. Proc. IMechE Part C: Journal of Mechanical Engineering Science, 226(5), 1263–1277.

    Article  Google Scholar 

  164. Rosic, B., Denton, J. D., Curtis, E. M., et al. (2008). The influence of shroud and cavity geometry on turbine performance: An experimental and computational study-Part2: Exit cavity gerometry. Journal of Turbomachinery, 130, 041002.

    Article  Google Scholar 

  165. Adami, P., Milli, A., Martelli, F., et al. (2006). Comparison of different shroud configurations in high-pressure turbines using unsteady CFD. ASME Paper GT2006-90442.

    Google Scholar 

  166. Schlienger, J., Pfau, A., Kalfas, A. L., et al. (2003) Effects of labyrinth seal variation on multistage axial turbine flow. ASME Paper GT2003-38270.

    Google Scholar 

  167. Pfau, A., Kalfas, A. I., & Abhari, R. S. (2004). Making use of labyrinth interaction flow. Journal of Turbomachinery, 129(1), 164–174.

    Article  Google Scholar 

  168. Reid, K. (2005) Effect of leakage flows on turbine performance (PhD thesis). Cambridge University, Cambridge.

    Google Scholar 

  169. Nirmalan, N. V, & Bailey, J. C. (2005). Experimental investigation of aerodynamic losses of different shapes of a shrouded blade tip section. ASME Paper GT2005-68903.

    Google Scholar 

  170. Auyer, E. L. (1954). United States Patent 2685429. USA: Assignee General Electric Company.

    Google Scholar 

  171. Smile, H. J., & Paulson, E. E. (1960). United States Patent 2963268[P]. USA: Assignee General Electric Company.

    Google Scholar 

  172. Turnquist, N. A., Tseng, T., Steinetz, B., et al. (1998). Analysis and full scale testing of an aspirating face seal with improved flow isolation. AIAA Paper 98-3285.

    Google Scholar 

  173. Curtis, E. M., Denton, J. D., Longley, J. P., et al. (2009). Controlling tip leakage flow over a shrouded turbine rotor using an air-curtain. ASME Paper GT2009-59411.

    Google Scholar 

  174. Hodson, H. P., & Dominy, R. G. (1987). Three-dimensional flow in a low-pressure turbine cascade at its design condition. Journal of Turbomachinery, 109(2), 177–185.

    Article  Google Scholar 

  175. Moore, J., & Adhye, R. Y. (1985). Secondary flows and losses downstream of a turbine cascade. Journal of Engineering for Gas Turbines and Power, 107(4), 961–968.

    Article  Google Scholar 

  176. MacIsaac, G. D., Sjolander, S. A., & Praisner, T. J. (2012). Measurements of losses and Reynolds stresses in the secondary flow downstream of a lowspeed linear turbine cascade. Journal of Turbomachinery, 134, 061015.

    Article  Google Scholar 

  177. Gregory-Smith, D. G., Walsh, J. A., Graves, C. P., et al. (1988). Turbulence measurements and secondary flows in a turbine rotor cascade. Journal of Turbomachinery, 110(4), 479–485.

    Article  Google Scholar 

  178. Moore, J., Shaffer, D. M., & Moore, J. G. (1987). Reynolds stresses and dissipation mechanisms downstream of a turbine cascade. Journal of Turbomachinery, 109(2), 258–267.

    Article  Google Scholar 

  179. Lyall, M. E., King, P. I., & Sondergaard, R. (2013). Endwall loss and mixing analysis of a high lift low pressure turbine cascade. Journal of Turbomachinery, 135, 051006.

    Article  Google Scholar 

  180. Hodson, H. P., & Dominy, R. G. (1987). The off-design performance of a low-pressure turbine cascade. Journal of Turbomachinery, 109(2), 201–209.

    Article  Google Scholar 

  181. Hodson, H. P., & Addison, J. S. (1988). Wake-boundary layer interactions in an axial flow turbine rotor at off-design conditions. ASME Paper88-GT-233.

    Google Scholar 

  182. Yamamoto, A., & Nouse, H. (1988). Effects of incidence on three dimensional flows in a linear turbine cascade. Journal of Turbomachinery, 110(4), 486–496.

    Article  Google Scholar 

  183. Yamamoto, A., Tominaga, J., Matsunuma, T., et al. (1994). Detailed measurements of three-dimensional flows and losses inside an axial turbine rotor. ASME Paper 94-GT-348.

    Google Scholar 

  184. Brear, M. J., Hodson, H. P., Gonzalez, P., et al. (2001). Pressure surface separations in low pressure tubines: Part 2 of 2—Interactions with the secondary flow. ASME Paper 2001-GT-0438.

    Google Scholar 

  185. Moore, H., Gregory-Smith, D. G. (1996). Transition effects on secondary flows in a turbine cascade. ASME Paper 96-GT-100.

    Google Scholar 

  186. Ingram, G. L. (2003). Endwall profiling for the reduction of secondary flow in turbines. Durham: University of Durham.

    Google Scholar 

  187. Vera, M., de la Rosa, Blanco E., Hodson, H. P., et al. (2009). Endwall boundary layer development in an engine representative four-stage low pressure turbine rig. Journal of Turbomachinery, 131, 011017.

    Article  Google Scholar 

  188. de la Rosa, Blanco E., Hodson, H. P., & Torre, D. (2003). Influence of the state of the inlet end wall boundary layer on the interaction between pressure surface separation and end wall flows. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(4), 433–442.

    Google Scholar 

  189. Kuerner, M., Schrack, D., Gier, J., et al. (2012). Low pressure turbine secondary vortices: Reynolds lapse. Journal of Turbomachinery, 134, 061022.

    Article  Google Scholar 

  190. Yang, L. (2006). Investigations of complicated flow mechanism and aerodynamic design method in low pressure turbine at low Reynolds number. Beijing: Beihang University.

    Google Scholar 

  191. Schneider, C. M., Schrack, D., Kuerner, M., et al. (2013). On the unsteady formation of secondary flow inside a rotating turbine blade passage. Journal of Turbomachinery, 136, 061004.

    Article  Google Scholar 

  192. Ciorciari, R., Kirik, I., Niehuis, R. (2013). Effects of unsteady wakes on the secondary flows in the linear T106 turbine cascade. ASME Paper GT2013-94768.

    Google Scholar 

  193. Tucker, P. G. (2011). Computation of unsteady turbomachinery flows: Part 1—progress and challenges. Progress in Aerospace Sciences, 47(7), 522–545.

    Article  Google Scholar 

  194. Tucker, P. G. (2011). Computation of unsteady turbomachinery flows: Part 2—LES and hybrids. Progress in Aerospace Sciences, 47(7), 546–569.

    Article  Google Scholar 

  195. Tyacke, J., Tucker, P., Jefferson-Loveday, R., et al. (2013). Large eddy simulation for turbines: Methodologies, cost and future outlooks. Journal of Turbomachinery, 136, 061009.

    Article  Google Scholar 

  196. Ye, J. (2011). Some improvements on the large-eddy simulation solver for complex compressible flows. Beijing: Beihang University.

    Google Scholar 

  197. Hourmouziadis, J. (1989). Aerodynamic design of low pressure turbines. AGARD Lecture Series 167.

    Google Scholar 

  198. Schlichting, H., & Kestin, J. (1960). Boundary layer theory (4th ed.). New York: McGraw-Hill Book Company.

    Google Scholar 

  199. Chen, M. (2002). Fundamentals of viscous fluid dynamics. Beijing: Higher Education Press.

    Google Scholar 

  200. Volino, R. J., & Hultgren, L. S. (2001). Measurements in separated and transitional boundary layers under low-pressure turbine airfoil conditions. Journal of Turbomachinery, 123(2), 189–197.

    Article  Google Scholar 

  201. Castner, R., Chiappetta, S., Wyzykowski, J., et al. (2002). An engine research program focused on low pressure turbine aerodynamic performance. ASME Paper GT2002-30004.

    Google Scholar 

  202. Lake, J. P., King, P. I., & Rivir, R. B. (1999). Reduction of separation losses on a turbine blade with low Reynolds number. AIAA Paper 99-0242.

    Google Scholar 

  203. Kürner, M., Reichstein, G. A., Schrack, D., et al. (2012). Low pressure turbine secondary vortices: Reynolds lapse. Journal of Turbomachinery, 134, 061022.

    Article  Google Scholar 

  204. Lipfert, M., Marx, M., Rose, M. G., et al. (2014). A low pressure turbine at extreme off-design operation. Journal of Turbomachinery, 136, 031018.

    Article  Google Scholar 

  205. Aero Engine Design Handbook Editorial Board. (2000). Aero engine design handbook, volume 5, turbojet and turbofan engine performance and design. Beijing: Aviation Industry Press.

    Google Scholar 

  206. Mahallati, A., McAuliffe, B. R., Sjolander, S. A., et al. (2013). Aerodynamics of a low-pressure turbine airfoil at low Reynolds numbers—Part I: steady flow measurements. Journal of Turbomachinery, 135, 011010.

    Article  Google Scholar 

  207. Mahallati, A., & Sjolander, S. A. (2013). Aerodynamics of a low-pressure turbine airfoil at low Reynolds numbers—Part II: blade-wake interaction. Journal of Turbomachinery, 135, 011011.

    Article  Google Scholar 

  208. Li, W., Zou, Z., & Zhao, X. (2004). The effect of Reynolds number on the characteristics of the low pressure turbine. Journal of Aerospace Power, 19(6), 822–827.

    Google Scholar 

  209. Wang, S., Liu, X., Zhou, X., et al. (2011). Aerodynamic performance analysis of low pressure turbine at low Reynolds numbers. Turbine technology, 53(5), 324–327.

    Google Scholar 

  210. Zou, Z., Ning, F., Liu, H., et al. (2004). Effect of Reynolds number on turbine cascade flow. Engineering thermophysics, s(2), 216–219.

    Google Scholar 

  211. Kürner, M., Schneider, C., Rose, M. G., et al. (2010). LP turbine Reynolds lapse phenomena: time averaged area traverse and multistage CFD. ASME Paper GT2010-23114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Zou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zou, Z., Wang, S., Liu, H., Zhang, W. (2018). Flow Mechanisms in Low-Pressure Turbines. In: Axial Turbine Aerodynamics for Aero-engines. Springer, Singapore. https://doi.org/10.1007/978-981-10-5750-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5750-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5749-6

  • Online ISBN: 978-981-10-5750-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics