Skip to main content

Impacts and Management of Temperature and Water Stress in Crop Plants

  • Chapter
  • First Online:
Abiotic Stress Management for Resilient Agriculture

Abstract

Plant growth and development are affected by various abiotic stresses like drought, submergence, salinity and high and low temperature. These abiotic stresses cause average yield losses of greater than 50% in a majority of crop plants. Food production needs to be doubled by 2050 to meet the growing demands of an increasing global population. Significant damage is being caused to crops, especially through temperature and water stress associated with climate change. High- and low-temperature stresses affect crop productivity by adverse biochemical changes in plants. Similarly, drought and water stress also affect the crop’s performance throughout the growing season. Understanding plant responses and molecular and physiological changes occurring during these stresses is necessary to improve current cultivars and release new cultivars with enhanced resistance to such stresses. An overview of the impacts of high- and low-temperature stress, drought and submergence in plant growth and development and the physiological and molecular responses of plants is discussed. Strategies adopted by plants to overcome these stresses through avoidance and tolerance mechanisms are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, MartĂ­nez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139:1304–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BĂĄga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7:53–68

    Article  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Buriro M, Oad FC, Keerio MI, Tunio S, Gandahi AW et al (2011) Wheat seed germination under the influence of temperature regimes. Sarhad J Agric 27:539–543

    Google Scholar 

  • Cao YY, Duan H, Yang LN, Wang ZQ, Liu LJ, Yang JC (2009) Effect of high temperature during heading and early filling on grain yield and physiological characteristics in indica rice. Acta Agron Sin 35:512–521

    CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conroy J, Seneweera S, Basra A, Rogers G, Nissen-Wooller B (1994) Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Func Plant Biol 21:741–758

    Google Scholar 

  • Farooq M, Bramley H, Palta JO, Siddique KHM (2011) Heat stress in wheat during reproductive and grain filling phases. Crit Rev Plant Sci 30:1–17

    Article  Google Scholar 

  • Fernando N, Manalil S, Florentine S, Chauhan B, Seneweera S (2016) Glyphosate resistance of C3 and C4 weeds under rising atmospheric CO2. Front Plant Sci 7:910. https://doi.org/10.3389/fpls.2016.00910

    Article  PubMed  PubMed Central  Google Scholar 

  • Frederiks TM (2010) Frost resistance in cereals after ear emergence. PhD Thesis, University of Southern Queensland

    Google Scholar 

  • Frederiks TM, Christopher JT, Harvey GL, Sutherland MW, Borrell AK (2012) Current and emerging screening methods to identify post-head-emergence frost adaptation in wheat and barley. J Exp Bot 63:5405–5416

    Article  CAS  PubMed  Google Scholar 

  • Frova C, Sari-Gorla M (1994) Quantitative trait loci (QTLs) for pollen thermo-tolerance detected in maize. Mol Gen Genet 245:424–430

    Article  CAS  PubMed  Google Scholar 

  • Gibson LR, Paulsen GM (1999) Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci 39:1841–1846

    Article  Google Scholar 

  • Goodstal FJ, Kohler GR, Randall LB, Bloom AJ, St Clair DA (2005) A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 111:898–905

    Article  Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35:1050–1064

    Article  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Physiological and biochemical mechanisms of nitric oxide induced abiotic stress tolerance in plants. Am J Plant Physiol 5:295–324

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013a) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013b) Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress – plant responses and applications in agriculture. InTech, Rijeka, pp 169–205

    Google Scholar 

  • Intergovernmental panel on climate change (IPCC), Climate Change 2007: Working Group I: The Physical Science Basis, https://www.ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-projections-of.html. Retrieved on 18th July 2016

  • Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  • Khanna HK, Daggard GE (2006) Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallization inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures. Plant Cell Rep 25:1336–1346

    Article  CAS  PubMed  Google Scholar 

  • Knoll J, Ejeta G (2008) Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theor Appl Genet 116:541–553

    Article  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, Von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lone AA, Khan MH, Dar ZA, Wani SH (2016) Breeding strategies for improving growth and yield under waterlogging conditions in maize: a review. Maydica 61:1–11

    Google Scholar 

  • Lou QJ, Chen L, Sun ZX, Xing YZ, Li J, Xu XY et al (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.) Euphytica 158:87–94

    Article  CAS  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM et al (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Gene 115:767–776

    Article  CAS  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Nat Acad Sci USA 101:9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan B, Sarkar M, Kundagrami S (2016) Role of slow elongation of stem and induction of alcohol dehydrogenase (Adh) enzyme for increment of survival under submergence condition in Rice (Oryza sativa L.) Imperial J Interdisc Res 2(7):486–492

    Google Scholar 

  • Presterl T, Ouzunova M, Schmidt W, Möller EM, Röber FK, Knaak C et al (2007) Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114:1059–1070

    Article  PubMed  Google Scholar 

  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y et al (2010) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239

    Article  PubMed  Google Scholar 

  • Ripoll J, Urban L, Brunel B, Bertin N (2016) Water deficit effects on tomato quality depend on fruit developmental stage and genotype. J Plant Physiol 190:26–35

    Article  CAS  PubMed  Google Scholar 

  • RodrĂ­guez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Appl 22:1–10

    Google Scholar 

  • Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant 41(3):387–394

    Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seneweera S, Makino A, Mae T, Basra AS (2005) Response of rice to p(CO2) enrichment: the relationship between photosynthesis and nitrogen metabolism. J Crop Improve 13:31–53

    Article  CAS  Google Scholar 

  • Shiklomanov I (1993) World fresh water resources, in: Peter H Gleick (editor), water in crisis: a guide to the World's fresh water resources. Oxford University Press, New York

    Google Scholar 

  • Takahashi N (1961) The relation of water absorption to germination of rice seed. Sci Rep Res Inst Tohoku Univ D 12:61–69

    Google Scholar 

  • Talukder S, Babar M, Vijayalakshmi K, Poland J, Prasad P, Bowden R et al (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.) BMC Genet 15:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wollenweber B, Porter JR, Schellberg J (2003) Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci 189:142–150

    Article  Google Scholar 

  • Xie XJ, Li BB, Li YX, Shen SH (2009) High temperature harm at flowering in Yangtze River basin in recent 55 years. Jiangsu J Agric Sci 25:28–32

    CAS  Google Scholar 

  • Xu Q, Paulsen AQ, Guikema JA, Paulsen GM (1995) Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation. Environ Exp Bot 35:43–54

    Article  Google Scholar 

  • Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5:649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282

    Article  CAS  Google Scholar 

  • Yang Y-H, Zhu X-C, Wang S-C, Hu G-B, Hee H, Huang X-M (2010) Developmental problems in over-winter offseason longan fruit. I: effect of temperature. Sci Hortic 126:351–358

    Article  Google Scholar 

  • Yousfi S, Marquez AJ, Betti M, Araus JL, Serret MD (2016) Gene expression and physiological responses to salinity and water stress of contrasting durum wheat genotypes. J Integr Plant Biol 58:48–66

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Chenu K, Fernanda Dreccer M, Chapman SC (2012) Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Glob Chang Biol 18:2899–2914

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Seneweera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Arun-Chinnappa, K.S., Ranawake, L., Seneweera, S. (2017). Impacts and Management of Temperature and Water Stress in Crop Plants. In: Minhas, P., Rane, J., Pasala, R. (eds) Abiotic Stress Management for Resilient Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5744-1_9

Download citation

Publish with us

Policies and ethics