Skip to main content

Heavy Metal Toxicities in Soils and Their Remediation

  • Chapter
  • First Online:

Abstract

Pollution of soils with heavy metals from various sources has become a common feature across the globe due to increase in anthropogenic activities and industrial development and has attracted the attention of all stakeholders. In spite of the differential tolerance of plants to heavy metal toxicities, impairment in the productivity of most of the agricultural crops is steadfast throughout the globe. Bio-transfer of these metals remains unabated from polluted sites and even through animal milk and dung. The remediation methods are broadly grouped into engineering, electrokinetics, and bioremediation. These have their own merits and demerits, but the bioremediation is quite effective and the current results are encouraging. Therefore, the sources of heavy metals to soils (including pathways), their effect on soils and plants, and few of the proven phytoremediation methods have been elaborated here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abumaizar RJ, Smith EH (1999) Heavy metal contaminants removal by soil washing. J Hazard Mater 70(1–2):71–86

    Article  CAS  PubMed  Google Scholar 

  • Adriano DC (2003) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York, pp 1–165

    Google Scholar 

  • Alexander AP, Christos DT (2003) Lead (II) retention by Alfisol and clinoptilolite: cation balance and pH effect. Geoderma 115:303–312

    Article  CAS  Google Scholar 

  • Al-Khashman OA (2007) Determination of metal accumulation in deposited street dusts in Amman. Jordan. Environ Geochem Health 29(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79(3):273–276

    Article  CAS  PubMed  Google Scholar 

  • Al-Shayeb SM, Seaward MRD (2001) Heavy metal content of roadside soils along ring road in Riyadh (Saudi Arabia). Asian J Chem 13(2):407–423

    CAS  Google Scholar 

  • Aseman-Bashiz E, Asgharnia H, Akbari H, Iranshahi L, Mostafaii GR (2014) Bioremediation of the soils contaminated with cadmium and chromium by the earthworm Eisenia fetida. Anuário do Instituto de Geociências - UFRJ 37(2):216–222

    Google Scholar 

  • Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 24:1–15

    Google Scholar 

  • Awashthi SK (2000) Prevention of food adulteration act no 37 of 1954. Central and state rules as amended for 1999. Ashoka Law House, New Delhi

    Google Scholar 

  • Aydinalp C, Marinova S (2003) Distribution and forms of heavy metals in some agricultural soils. Polish J Env Studies 12(5):629–633

    CAS  Google Scholar 

  • Bona L, Wright RJ, Baligar VC, Matuz J (1993) Screening wheat and other small grains for acid soil tolerance. Landsc Urban Plan 27:175–178

    Article  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Buekers J (2007) Fixation of cadmium, copper, nickel and zinc in soil: kinetics, mechanisms and its effect on metal bioavailability, Ph.D. thesis, Katholieke Universiteit Lueven, Dissertationes De Agricultura, Doctora atsprooef schrift nr. pp. 1–107

    Google Scholar 

  • Campbell PGC (2006) Cadmium-a priority pollutant. Environ Chem 3(6):387–388

    Article  CAS  Google Scholar 

  • Chen TB, Wong JWC, Zhou HY, Wong MH (1997) Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environ Pollut 96(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Jia-nan L, Wang Z, Dong L, Jing-hua F, Juan-juan Q (2011) Remediation of Pb-resistant bacteria to Pb polluted soil. J. Environ Prot 2:130–141

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. http://dx.Doi.Org/10.1155/2014/52708

  • China SP, Das M, Maiti SK (2014) Phytostabilization of mosaboni copper mine tailings: a green step towards waste management. Appl Ecol Environ Res 12(1):25–32

    Article  Google Scholar 

  • Chopra AK, Pathak C, Prasad G (2009) Scenario of heavy metal contamination in agricultural soil and its management. J App Natural Sci 1(1):99–108

    Google Scholar 

  • Christoforidis A, Stamatis N (2009) Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece. Geoderma 151(3–4):257–263

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In-Vitro Cell Dev Biol 29:207–212

    Article  Google Scholar 

  • Dabke SV (2013) Vermi-remediation of heavy metal-contaminated soil. J Health Poll 4:4–10

    Article  Google Scholar 

  • Dai J, Becquerb T, Rouillerc JH, Reversata G, Bernhard-Reversata F, Nahmania J, Lavellea P (2004) Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biol Biochem 36:91–98

    Article  CAS  Google Scholar 

  • Dandan W, Huixin L, Feng H, Xia W (2007) Role of earthworm-straw interactions on phytoremediation of cu contaminated soil by ryegrass. Acta Ecol Sin 27(4):1292–1299

    Article  Google Scholar 

  • Datta R, Darkar D (2004) Biotechnology in phytoremediation of metal contaminated soils. Proc Indian Nat Sci Acad B 70(1):99–108

    CAS  Google Scholar 

  • Dissanayake CB, Chandrajith R (2009) Phosphate mineral fertilizers, trace metals and human health. J Nat Sci Found Sri Lanka 37(3):153–165

    CAS  Google Scholar 

  • Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustain For 7:2189–2212

    Article  CAS  Google Scholar 

  • Djingova R and Kuleff I (2000) Instrumental techniques for trace analysis, In: Vernet JP (Ed), Trace elements: their distribution and effects in the environment, Elsevier, London

    Google Scholar 

  • Ekperusi OA, Aigbodion IF (2015) Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae. Ekperusi Aigbodion Springer Plus 4:540

    Article  PubMed  CAS  Google Scholar 

  • Ekperusi OA, Aigbodion IF, Iloba BN, Okorefe S (2016) Assessment and bioremediation of heavy metals from crude oil contaminated soil by earthworms. Ethiopian J Environ Stud Manage 9(Suppl. 2):1036–1046

    Google Scholar 

  • European Union (2002) Heavy metals in wastes, European commission on environment http://www.ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf

  • Garaiyurrebaso O, Garbisu C, Blanco F, Lanzén A, Martín I, Epelde L, Becerril JM, Jechalke S, Smalla K, Grohmann E, Alkorta I (2017) Long-term effects of aided phytostabilisation on microbial communities of metal-contaminated mine soil. FEMS Microbiol Ecol 93(3):fiw252

    Article  PubMed  Google Scholar 

  • Garbisu C, Alkorta I (1997) Bioremediation: principles and future. J Clean Tech Environ Toxicol Occup Med 6:1–16

    Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Mineral Proc Environ Protec 3(1):58–66

    Google Scholar 

  • Garbisu C, Hernández-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology that uses green plants to remove contaminants from polluted areas. Rev Environ Health 17(3):173–188

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321. doi:10.1007/s10311-011-0313-7

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang X, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

    Article  CAS  Google Scholar 

  • Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res 6(1):147–161

    CAS  Google Scholar 

  • Goblenz A, Wolf K, Bauda P (1994) The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Rev 14:303–308

    Article  Google Scholar 

  • Gowd SS, Reddy MR, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the ganga plain, Uttar Pradesh, India. J Hazard Mater 174:113–121

    Article  CAS  Google Scholar 

  • Hawkes JS (1997) Heavy metals. J Chem Educ 74:1369–1374

    Article  Google Scholar 

  • Hellekson D (1999) Bioventing principles, applications and potential. Restor Reclam Rev 5(2):1–9

    Google Scholar 

  • Hemida SK, Omar SA, Abdel-Mallek AY (1997) Microbial populations and enzyme activity in soil treated with heavy metals. Water Air Soil Pollut 95(1):13–22

    CAS  Google Scholar 

  • Hiroki M (1992) Effects of heavy metal contamination on soil microbial population. Soil Sci Pl Nutrit 38(1):141–147

    Article  CAS  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier, London

    Google Scholar 

  • Iranzo M, Sainz-Pardo I, Boluda R, Sánchez J, Mormeneo S (2001) The use of microorganisms in environmental remediation. Ann Microbiol 51:135–143

    Google Scholar 

  • Is L, Kim OK, Chang YY, Bae B, Kim HH, Baek KH (2002) Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range. J Biosci Bioeng 94(5):406–411

    Article  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. African J Biotech 8(6):921–928

    CAS  Google Scholar 

  • Jiang W, Fan W (2008) Bioremediation of heavy metal–contaminated soils by sulfate-reducing bacteria. Ann N Y Acad Sci 1140:446–454

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Hundal SS (2015) Bioremediation of heavy metal contaminated soil using earthworm Eisenia fetida. J Environ 04(02):25–29

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere (41(1–2):197–207

    Google Scholar 

  • Kim S, Moon S, Kim K (2001) Removal of heavy metals from soils using enhanced electrokinetic soil processing. Water Air Soil Pollut 125(1):259–272

    Article  CAS  Google Scholar 

  • Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modelling. Geochim Cosmochim Acta 70(9):2163–2190

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Inter 17(1):6–15

    Article  CAS  Google Scholar 

  • Kumar P, Jadhav PD, Rayalu SS, Devotta S (2007) Surface-modified zeolite–a for sequestration of arsenic and chromium anions. Curr Sci 92:512–517

    CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  • Leggo PJ, Ledesert B, Christie G (2006) The role of clinoptilolite in organo-zeolitic-soil systems used for phytoremediation. Sci Total Environ 363:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lema MW, Ijumba JN, Njau KN, Ndakidemi PA (2014) Environmental contamination by radionuclides and heavy metals through the application of phosphate rocks during farming and mathematical modeling of their impacts to the ecosystem. Int J Engg Res Gen Sci 2(4):852–863

    Google Scholar 

  • Lenntech Water Treatment and Air Purification (2004) Water treatment. Lenntech, Rotterdamseweg, Netherlands (http://www.excelwater.com/thp/filters/Water-Purification. Inter J Adv Res. 2(6): 1043–1055

  • Levy DB, Barbarick KA, Siemer EG, Sommers LE (1992) Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado. J Environ Qual 21(2):185–195

    Article  CAS  Google Scholar 

  • Li J, Zhang GN, Li Y (2010) Review on the remediation technologies of POPs. Hebei Environl Sci:65–68

    Google Scholar 

  • Liao M, Chen CL, Huang CY (2005) Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area. J Environ Sci (China) 17(5):832–837

    CAS  Google Scholar 

  • Ling W, Shen Q, Gao Y, Gu X, Yang Z (2007) Use of bentonite to control the release of copper from contaminated soils. Aust J Soil Res 45(8):618–623

    Article  CAS  Google Scholar 

  • Lu M, Zhang Z (2014) Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of sedum alfredii with tall fescue associated with Bacillus Cereus JP12. Plant Soil 382:89–102

    Article  CAS  Google Scholar 

  • Luo C, Liu C, Wang Y, Liu X, Li F, Zhang G, Li X (2011) Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. J Hazard Mater 186:481–490

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T (2010) Phytoextraction of heavy metals – the process and scope for remediation of contaminated soils. Soil Environ 29(2):91–109

    CAS  Google Scholar 

  • Markus JA, Mcbratney AB (1996) An urban soil study: heavy metals in glebe, Australia. Aust J Soil Res 34(3):453–465

    Article  CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Rev Environ Sci Tech 8:622–654

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N (2000a) Soil testing for heavy metals. Commun Soil Sci Plant Anal 31(11–14):1661–1700

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Hamon RE, McLaren RG, Speir TW, Rogers SL (2000b) Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res 38(6):1037–1086

    Article  CAS  Google Scholar 

  • Miller JR, Hudson-Edwards KA, Lechler PJ, Preston D, Macklin MG (2004) Heavy metal contamination of water, soil and produce within riverine communities of the Rı́o Pilcomayo basin, Bolivia. Sci Total Environ 320(2–3):189–209

    Article  CAS  PubMed  Google Scholar 

  • Ming DW, Mumpton FA (1989) Zeolites in soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Sci Soc Am, Madison, Wisconsin, pp 873–911

    Google Scholar 

  • Mishra A, Shukla SK (2014) Heavy metal toxicity: a blind evil. J Forensic Res 5:e116. doi:10.4172/2157-7145.1000e116

    Google Scholar 

  • Moosavi SG, Seghatoleslami MJ (2013) Phytoremediation: a review. Adv Agric Biol 1(1):5–11

    Google Scholar 

  • Mortvedt JJ (1995) Heavy metal contaminants in inorganic and organic fertilizers. Fert Res 43(1):55–61

    CAS  Google Scholar 

  • Mühlbachová G, Šimon T (2003) Effects of zeolite amendment on microbial biomass and respiratory activity in heavy metal contaminated soils. Plant Soil Environ 49:536–541

    Google Scholar 

  • Mullins GL, Martens DC, Miller WP, Hallock DL (1982) Copper availability, form, and mobility in soils from three annual copper-enriched hog manure applications. J Environ Qual 11(2):316–320

    Article  CAS  Google Scholar 

  • Nahmani J, Hodson ME, Black S (2007) A review of studies performed to assess metal uptake by earthworms. Environ Pollut 145:402–424

    Article  CAS  PubMed  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  PubMed  Google Scholar 

  • Ololade IA (2014) An assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geo-accumulation indexes. J Environ Prot 5:970–982

    Article  CAS  Google Scholar 

  • Pajević S, Borišev M, Nikolić N, Arsenov DD, Orlović S, Župunski M (2016) Phytoextraction of heavy metals by fast- growing trees: a review. In: A. Ansari et al. (eds.), Phytoremediation, Springer international publishing Switzerland 29–64

    Google Scholar 

  • Prashanth VG, Prabha ML (2016) Bioremediation of contaminated lead soil by Eudrilus Eugeniae and synthesis of nanoparticles. Int J Medicine Res 1(2):31–34

    Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56(2):99–151

    Article  CAS  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekharan P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    CAS  PubMed  Google Scholar 

  • Ramesh K, Reddy DD, Biswas AK, Subba-Rao A (2011) Zeolites and their potential uses in agriculture. Adv Agron 113:215–236

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bio-concentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  • Romic M, Romic D (2003) Heavy metals distribution in agricultural top soils in urban area. Environ Geol 43(7):795–805

    CAS  Google Scholar 

  • Ross SM (1994) Toxic metals in soil–plant systems. Wiley, Chichester, p 469

    Google Scholar 

  • Sahu P, Sharma S (2016) Mercury and lead accumulation by Eudrilus eugeniae in soils amended with Vermicompost. Biol Forum 8(1):565–569

    Google Scholar 

  • Sakakibara M, Watanabe A, Inoue M, Sano S, Kaise T (2010) Phytoextraction and phytovolatilization of arsenic from As-contaminated soils by Pteris vittata, Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy: Vol. 12 , Article 26

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet L, Raskin L (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Sanyal SK (2001) Colloid chemical properties of soil humic substances– a relook. J Indian Soc Soil Sci 49:537–569

    CAS  Google Scholar 

  • Shakeri IA, Moore F, Modabberi S (2009) Heavy metal contamination and distribution in the shiraz industrial complex zone soil, south shiraz, Iran. World Appl Sci J 6(3):413–425

    CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxi Environ Safety 66(2):258–266

    Article  CAS  Google Scholar 

  • Shiowatana J, McLaren RG, Chanmekha N, Samphao A (2001) Fractionation of arsenic in soil by a continuous-flow sequential extraction method. J Environ Qual 30(6):1940–1949

    Article  CAS  PubMed  Google Scholar 

  • Shrotriya N, Joshi JK, Mukhiya YK, Singh VP (1984) Toxicity assessment of selected heavy metals, herbicides and fertilizers in agriculture. Int J Environ Stu 22(3–4):245–248

    Article  CAS  Google Scholar 

  • Shukla AK, Behera SK (2012) Progress report 2007–10. All India Coordinated Research Project of Micro and Secondary Nutrients and Pollutant Elements in Soils and Plants, ICAR-IISS, Bhopal, p 102

    Google Scholar 

  • Shukla AK, Tiwari PK (2013). Progress report 2011–2013. AICRP-MSN, pp 93–120

    Google Scholar 

  • Shukla AK, Tiwari PK (2014) Progress report 2011–13. All India Coordinated Research Project of Micro and Secondary Nutrients and Pollutant Elements in Soils and Plants, ICAR-IISS, Bhopal, p 155

    Google Scholar 

  • Sinha B, Bhattacharya K (2011) Retention and release isotherm in arsenic-humic/fulvic equilibrium study. Biol Fertil Soils 47:815–822

    Article  CAS  Google Scholar 

  • Sizmur T, Hodson ME (2009) Do earth worms impact metal mobility and availability in soil? – a review. Environ Pollut 157:1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Smith LA, Means JL, Chen A et al (1995) Remedial options for metals-contaminated sites. Lewis Publishers, Boca Raton

    Google Scholar 

  • Sobolev D, Begonia MF (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5(5):450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurgeon DJ, Hopkin SP, Jones DT (1994) Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (Savigny): assessing the environmental impact of point-source metal contamination in terrestrial ecosystems. Environ Pollut 84:123–130

    Article  CAS  PubMed  Google Scholar 

  • Stalin P (2011) Annual report 2010-11. AICRP-MSN Coimbatore Centre. pp. 5–6

    Google Scholar 

  • Stalin P, Malathi P, Muthumanickam D (2014) Annual Report 2013–14, All India Coordinated Research Project of Micro and Secondary Nutrients and Pollutant Elements in Soils and Plants, Coimbatore Centre .1–.10

    Google Scholar 

  • van Straalen NM, Denneman CAJ (1989) Ecotoxicological evaluation of soil quality criteria. Ecotox Environ Safety 18(3):241–251

    Article  Google Scholar 

  • Sun YB, Sun GH, ZhouQX XYM, Wang L, Liang XF, Sun Y, Qing X (2011) Induced-phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with marvel of Peru (Mirabilis jalapa L.) Plant Soil Environ 57(8):364–371

    CAS  Google Scholar 

  • Surendra-Babu P, Patnaik MC, Khadke KM (2012) Annual report 2011-12 all India Coordinated Research Project of Micro and Secondary nutrients and pollutant elements in soils and plants, Hyderabad center

    Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Tang JC, Wang RG, Niu XW, Wang M, Chu HR, Zhou QX (2010) Characterization of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 7:3961–3969

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (as, Pb and hg) uptake by plants through phytoremediation. Int J Chem Engg 2011:1–31

    Article  Google Scholar 

  • Tsadilas CD (2000) Effect of soil pH on the distribution of heavy metals among soil fractions. In: Iskandar I (Ed.), Environment restoration of metals contaminated soils. Lewis Publishers, pp.107–119

    Google Scholar 

  • USEPA (1996) Report: recent developments for in situ treatment of metals contaminated soils, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. pp. 1–44

    Google Scholar 

  • USEPA (2007) Treatment technologies for site cleanup: annual status report (12th edn), Technical report EPA 542-R-07-012, Solid Waste and Emergency Response [5203P], Washington DC, USA. pp.1-H2

    Google Scholar 

  • Usmani Z, Kumar V (2015) Role of earthworms against metal contamination: a review. J Biodivers Environ Sci 6(1):414–427

    Google Scholar 

  • Veselý T, Tlustoš P, Száková J (2011) The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. Int J Phytoremediation 13(9):859–872

    Article  PubMed  CAS  Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation - critical overview. Sci Total Environ 289(1–3:97–121

    Article  Google Scholar 

  • Wang YP, Shi JY, Wang H, Lin Q, Chen XC, Chen YX (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safety 67(1):75–81

    Article  CAS  Google Scholar 

  • Wood JM (1974) Biological cycles for toxic elements in the environment. Science 183:1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011(402647):20–31. doi:10.5402/2011/402647

    Google Scholar 

  • Wuana RA, Okieimen FE, Imborvungu JA (2010) Removal of heavy metals from a contaminated soil using chelating organic acids. Int J Environ Sci Technol 7(3):485–496

    Article  CAS  Google Scholar 

  • Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, Fu J (2016) Effect of heavy metals pollution on soil microbial diversity and bermuda grass genetic variation. Front Plant Sci 7:755. doi:10.3389/fpls.2016.00755

    PubMed  PubMed Central  Google Scholar 

  • Yadav BK, Siebel MA, vanBruggen JJA (2011) Rhizo filtration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean Soil Air Water 39(5):467–474

    Article  CAS  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Zarcinas BA, Pongsakul P, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in Southeast Asia 2. Thailand Environ Geochem Health 26(3):359–371

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Fu W, Ye A, Zhang C (2015) Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun county, southeastern China. Int J Environ Res Public Health 12:1577–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou DM, Hao XZ, Xue Y (2004) Advances in remediation technologies of contaminated soils. Ecol Environ Sci 13(2):234–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind K. Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shukla, A.K., Ramesh, K., Nagdev, R., Srivastava, S. (2017). Heavy Metal Toxicities in Soils and Their Remediation. In: Minhas, P., Rane, J., Pasala, R. (eds) Abiotic Stress Management for Resilient Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5744-1_7

Download citation

Publish with us

Policies and ethics