Skip to main content

Impact of Climate Change on Vegetable Production and Adaptation Measures

  • Chapter
  • First Online:
Abiotic Stress Management for Resilient Agriculture

Abstract

Climate change influences vegetable production worldwide. However, its nature and impact vary, depending on the degree of climate change, geographical region, and crop production system. Possible impact of climate change may be visualized by change in productivity with reference to quality of crops; changes in agricultural practices like use of water, fertilizers, and pesticides; and environmental influences particularly in relation to the frequency and intensity of soil drainage which may lead to loss of nitrogen through leaching, soil erosion, and reduction of crop diversity. Vegetables are in general more sensitive to environmental extremes such as high temperatures and soil moisture stress. CO2 , a major greenhouse gas, influences growth and development as well as incidence of insect pests and diseases of vegetable crops . Under changing climatic situations, crop failures, shortage of yields, reduction in quality, and increasing pest and disease problems are common, and they render the vegetable cultivation unprofitable. Agriculture production needs to be adapted to the changing climate by mitigating its impact. Unless measures are undertaken to adapt to the effects of climate change on vegetable production, nutritional security in developing countries will be under threat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla AA, Verderk K (1968) Growth, flowering and fruit set of tomato at high temperature. The Neth J Agric Sci 16:71–76

    Google Scholar 

  • Anwar MR, Li LD, Farquharson R, Macadam I, Abadi A, Finlayson J, Ramilan T (2015) Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric Syst 132:133–144

    Article  Google Scholar 

  • AVRDC (2005) Annual report. AVRDC – The World Vegetable Center, Shanhua

    Google Scholar 

  • Bale JS, Masters ID, Hodkinson C, Awmack TM, Bezemer VK, Brown J et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chan Biol 8:1–16

    Article  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Ann Rev Ecol Syst 21:167–196

    Article  Google Scholar 

  • Bell GD, Halpert MS, Schnell RC, Higgins RW, Lowrimore J, Kousky VE, Tinker R, Thiaw W, Chelliah M, Artusa A (2000) Climate assessment for 1999. Supplement June 2000. Bull Amer Meteorol Soc 81(6)

    Google Scholar 

  • Bellarby J, Foereid B, Hastings A, Smith P (2008) Cool farming: climate impacts of agriculture and mitigation. Greenpeace International, Amsterdam, 43p

    Google Scholar 

  • Black RE, Allen LH, Bhutta ZA, Caulfield LE, Onis M de, Essati M, Mathers C, Rivera J (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochem & molecular biol of plants. ASPP, Rockville, pp 1158–1249

    Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:57–550

    Article  Google Scholar 

  • Clark DA (2004) Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Phil Trans R Soc 59:477–491

    Article  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426

    Article  CAS  PubMed  Google Scholar 

  • Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38:127–145

    Article  Google Scholar 

  • Erickson AN, Markhart AH (2002) Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ 25(1):123–130

    Google Scholar 

  • FAO (2001) http://www.fao.org

  • FAO (Food and Agricultural Organization of the United Nations) (2009) State of food insecurity in the world: economic crises—impacts and lessons learned. FAO, Rome

    Google Scholar 

  • Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, Delucia E (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ Entomol 34(2):479–485

    Article  Google Scholar 

  • Harrington R, Woiwod IP (1995) Insect crop pests and the changing climate. Weather 50:200–208

    Article  Google Scholar 

  • Hazra P, Samsul HA, Sikder D, Peter KV (2007) Breeding tomato (Lycopersicon esculentum mill) resistant to high temperature stress. Int J Plant Breed 1(1):31–40

    Google Scholar 

  • Hill MG, Dymock JJ (1989) Impact of climate change: agriculture/horticulture systems. DSIR entomology division submission to the New Zealand climate change Programme. Department of Scientific and Industrial Research, Auckland

    Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idso KE, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agric For Meteorol 69:153–203

    Article  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annual Revi Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • IPCC (2007a) Climate change, Fourth assessment report. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) Appendix I: glossary. In: Parry ML, Canziani OF, Palutik of JP et al (eds) Climate change: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 79–131

    Google Scholar 

  • ITC (International Trade Centre UNCTAD/WTO) and FiBL (Research Institute of Organic Agriculture) (2007) Organic farming and climate change. ITC, Geneva

    Google Scholar 

  • Kumar SV (2012) Climate change and its impact on agriculture: a review. Int J Agric Environ Biotech 4(2):297–302

    Google Scholar 

  • Lee J-M, Kubota C, Tsao SJ, Bie Z, Hoyos-Echevarria P, Morra L, Oda M (2010) Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127:93–105

    Article  Google Scholar 

  • Luo Y, Mooney HA (eds). (1999) Carbon dioxide and environmental stress. Academic Press, New York

    Google Scholar 

  • Mader P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243:1725–1728

    Article  CAS  PubMed  Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    Article  CAS  PubMed  Google Scholar 

  • Minaxi RP, Acharya KO, Nawale S (2011) Impact of climate change on food security. Int J Agric Environ Biotech 4(2):125–127

    Google Scholar 

  • Moretti CL, Mattos LM, Calbo AG, Sargent SA (2010) Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review. Food Res Int 43:1824–1832

    Google Scholar 

  • Niggli U, Schmid H, Fliessbach A (2008) Organic farming and climate change. International Trade Centre (ITC), Geneva, p 30

    Google Scholar 

  • Pandita ML, Singh N (1992) Vegetable production under water stress conditions in rainfed areas. In: Kuo CG (ed) Adaptation of food crops to temperature and water stress. AVRDC, Shanhua, pp 467–472

    Google Scholar 

  • Pani RK (2008) Climate change hits vegetable crops. Indian Express. Available from: http://www.expressbuzz.com

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H-pyrophosphatase (H-PPase) as a strategy to engineer drought –resistant crop plants. PNAS 102:18830–18835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson DT, Westbrook JK, Joyce RJV, Lingren PD, Rogasik J (1999) Weeds, insects and diseases. Clim. Change 43, 711_727.luo

    Google Scholar 

  • Phene CJ (1989) Water management of tomatoes in the tropics. In: Green SK (ed) Tomato and pepper production in the tropics. AVRDC, Shanhua, pp 308–322

    Google Scholar 

  • Pimentel D, Hepperly P, Hanson J, Douds D, Seidel R (2005) Environmental, energetic and economic comparisons of organic and conventional farming systems. Bioscience 55(7):557–582

    Article  Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect pests. Agric For Meteorol 57:221–240

    Article  Google Scholar 

  • Reganold JP, Glover JD, Andrews PK, Hinman HR (2001) Sustainability of three apple production systems. Nature 410:926–930

    Article  CAS  PubMed  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved dehydration- and cold-inducible gene expression. Biochem Biophys Res Comm 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Peet MM, Gardener RG (2001) Formation of parthenocarpic fruit and aborted flowers in tomato under moderately elevated temperatures. Sci Hortic 90:243–254

    Article  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post-anthesis periods and physiological process in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J Exp Bot 53:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens MA, Rudich J (1978) Genetic potential for overcoming physiological limitations on adaptability, yield, and quality in tomato. Hort Sci 13:673–678

    CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  CAS  PubMed  Google Scholar 

  • VonWestarp S, Chieng SS (2004) A comparison between low-cost drip irrigation, conventional drip irrigation, and hand watering in Nepal. Agric Water Manag 64:143–160

    Article  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. Soc Expt Biol 42:329–346

    CAS  Google Scholar 

  • Wheeler T, vonBraun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  PubMed  Google Scholar 

  • Wolfe DW (1994) Physiological and growth responses to atmospheric CO2 concentration. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field: using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziska LH (2003) Evaluation of the growth response of six invasive species to past, present, and future atmospheric CO2. J Exp Bot 54:395–406

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Teasdale JR, Bunce JA (1999) Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci 47:608–615

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Major Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Naik, P.S., Singh, M., Ranjan, J.K. (2017). Impact of Climate Change on Vegetable Production and Adaptation Measures. In: Minhas, P., Rane, J., Pasala, R. (eds) Abiotic Stress Management for Resilient Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5744-1_19

Download citation

Publish with us

Policies and ethics