Skip to main content

Thiourea: A Potential Bioregulator for Alleviating Abiotic Stresses

  • Chapter
  • First Online:

Abstract

Abiotic stresses, viz. drought, high temperature and salinity, are the major constraints in enhancing agricultural productivity. The predicted climate change is likely to further aggravate these environmental stresses. There has been unprecedented increase in the frequency and intensity of extreme events such as drought, heavy rainfall, flooding and high temperatures. Though sporadic in nature, these extreme events are expected to expand covering many regions. Hence for sustainable agriculture under these conditions, it is necessary to have crop plants endowed with mechanisms to cope with environmental stresses. Plants cope with these stresses and thrive under harsh environment through sophisticated and efficient mechanisms to re-establish and maintain redox homeostasis. These mechanisms involve efficient stress sensing and signaling processes. In addition, stresses lead to a vital reorientation of transport and partitioning of assimilate for plant growth and productivity under environmental stresses. Thiourea, a sulphydryl compound, has been observed to improve assimilate partitioning, photosynthetic efficiency and crop productivity. Since thiourea has redox regulatory properties imparted by –SH group, it can influence thiol-disulphide cycle through effects on plant thioredoxin system, which has a key role in plant tolerance to abiotic stresses. In several field studies, thiourea has been observed to mitigate drought, salinity and heat stress, and it enhances the crop yields when applied through foliar sprays. Thus, it acts as an effective bioregulater by regulation of cell metabolic activities and by restoring cellular redox homeostasis in crop plants under stressful environments. Hence, thiourea has considerable potential for achieving food security under the changing scenario of climate change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelkader AF, Hassanein RA, Ali H (2012) Studies on effects of salicylic acid and thiourea on biochemical activities and yield production in wheat (Triticum aestivum var Gimaza 9) plants grown under drought stress. Afr J Biotechnol 11:12728–12739

    CAS  Google Scholar 

  • Akladious SA (2014) Influence of thiourea application on some physiological and molecular criteria of sunflower (Helianthus annuus L.) plants under conditions of heat stress. Protoplasma 251:625–638

    Article  CAS  PubMed  Google Scholar 

  • Ameta GS, Singh M (2005) Studies on use of thiourea spray for yield advantage in rainfed maize (Zea mays L.) Int J Trop Agric 23:307–310

    Google Scholar 

  • Anitha S, Sreenivasan E, Purushothaman SM (2004) Effect of thiourea application on cowpea [Vigna unguiculata (L.) walp] productivity under rainfed conditions. J Trop Agric 42:53–54

    Google Scholar 

  • Anjum F, Wahid A, Javed F, Arshad M (2008) Influence of foliar applied thiourea on flag leaf gas exchange and yield parameters of bread wheat (Triticum aestivum) cultivars under salinity and heat stresses. Int J Agric Biol 10:619–626

    CAS  Google Scholar 

  • Anjum F, Wahid A, Farooq M, Javed F (2011) Potential of foliar applied thiourea in improving salt and high temperature. Int J Agric Biol 13:251–256

    Google Scholar 

  • Ashraf M, Arhar HR, Harris PJC, Kwon TR (2008) Some perspective strategies for improving crop salt tolerance. Adv Agron 97:45–11

    Article  CAS  Google Scholar 

  • Asthir B, Thapar R, Farooq M, Bains NS (2013) Exogenous application of thiourea improves the performance of late sown wheat by inducing terminal heat resistance. Int J Agric Biol 15:1337–1342

    CAS  Google Scholar 

  • Asthir B, Kaur R, Bains NS (2015) Variation of invertase in four wheat cultivars as influenced by thiourea and high temperature. Acta Physiol Plant 37:1712–1720

    Article  Google Scholar 

  • Barnell HR (1936) Seasonal changes in the carbohydrates of the wheat plant. New Phytol 35:229–266

    Article  CAS  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581

    Article  CAS  PubMed  Google Scholar 

  • Burman U, Garg BK, Kathju S (2004) Interactive effects of thiourea and phosphorus on clusterbean under water stress. Biol Plant 48:61–65

    Article  CAS  Google Scholar 

  • Burman U, Garg BK, Kathju S (2007) Interactive effects of phosphorus, nitrogen, and thiourea on clusterbean (Cyamopsis tetragonoloba L.) under rainfed conditions of the Indian arid zone. J Plant Nutr Soil Sci 170:803–810

    Article  CAS  Google Scholar 

  • Carr DJ, Wardlaw IF (1965) The supply of photosynthetic assimilates to the grain from the flag leaf and ear of wheat. Aust J Biol Sci 18:711–719

    CAS  Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96(11):5952–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae HB, Moon JC, Shin MR, Chi YH, Jung YJ, Lee SY, Nawkar GM, Jung HS, Hyun JK, Kim WY et al (2013) Thioredoxin reductase type C (NTRC) orchestrates enhanced thermo-tolerance to Arabidopsis by its redox-dependent holdase chaperone function. Mol Plant 6:323–336

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco J, Pereira J (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Colville L, Kranner L (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul 62:241–255

    Article  CAS  Google Scholar 

  • Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602

    Article  CAS  PubMed  Google Scholar 

  • D’Souza SF, Nathawat NS, Nair JS, Radha-Krishna P, Ramaswamy NK, Singh G, Sahu MP (2009) Enhancement of antioxidant enzyme activities and primary photochemical reactions in response to foliar application of thiols in water – stressed pearl millet. Acta Agronomica Hung 57:21–31

    Article  Google Scholar 

  • Evans LT, Wardlaw IF (1976) Aspects of the comparative physiology of grain yield in cereals. Adv Agron 28:301–359

    Article  CAS  Google Scholar 

  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T (2012) The proteome response of Hordeum spontaneum to salinity stress. Cereal Res Commun 40:1–10

    Google Scholar 

  • Foyer C-H, Noctor G (2005a) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C-H, Noctor G (2005b) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer C-H, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Foyer C-H, Lopez-Delgado H, Dat J-F et al (1997) Hydrogen peroxide-and glutathione- associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254

    Google Scholar 

  • Garg BK, Burman U, Kathju S (2006) Influence of thiourea on photosynthesis, nitrogen metabolism and yield of clusterbean (Cyamopsis tetragonoloba (1.) Taub.) under rainfed conditions of Indian arid zone. Plant Growth Regul 48:237–245

    CAS  Google Scholar 

  • Geiger DR, Giaquinta RT (1982) Translocation of photosynthate. In: Govindjee (ed) Photosynthesis vol. II. Development, carbon metabolism and plant productivity. Academic Press, New York, pp 345–386

    Google Scholar 

  • Geiger DR, Servaites JC (1991) Carbon allocation and response to stress. In: Response of plants to multiple stresses. Academic Press, New York, pp 103–127

    Chapter  Google Scholar 

  • Giaquinta RT (1976) Evidence of phloem loading from the apoplast: chemical modification of membrane sulphydryl groups. Plant Physiol 53:872–875

    Article  Google Scholar 

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning and yield. Annu Rev Plant Physiol 32:485–509

    Article  CAS  Google Scholar 

  • Gifford RM, Thorne JH, Hitz WD, Giaquinta RT (1984) Crop productivity and photoassimilate partitioning. Science 225:801–808

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Mair JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:815–818

    Article  Google Scholar 

  • Gyorgy P, Stiller ET, Williamson MB (1943) Retardation of rancidity by sulfhydryl compounds. Science 98:518–520

    Article  CAS  PubMed  Google Scholar 

  • Hassanein RA, Abdelkadr AF, Ali H, Amin AAE, Rashad EM (2012) Grain-priming and foliar pretreatment enhanced stress defense in wheat (Triticum aestivum var. Gimaza 9) plants cultivated in drought land. Aust J Crop Sci 6:121–129

    CAS  Google Scholar 

  • Hassanein RA, Amin AAE, Rashad EM, Ali H (2014–2015) Effect of thiourea and salicylic acid on antioxidant defense of wheat plants under drought stress. Int J Chem Tech Res 7:346–354

    CAS  Google Scholar 

  • Hong-bo S, Li-ye C, Mingan S, Jaleel CA, Hongmei M (2008) Higher plant antioxidants and redox signaling under environmental stresses. CR Biol 331:433–441

    Article  Google Scholar 

  • IPCC Summary for Policymakers Climate Change (2014) In: Field CB et al (eds) Impacts, adaptation, and vulnerability, part a: global and sectoral aspects. Cambridge University Press, New York

    Google Scholar 

  • Jia W, Zhang J (2000) Water stress -induced abscisic acid accumulation in relation to reducing agents and sulfhydryl modifiers in maize plant. Plant Cell Environ 23:1389–1395

    Google Scholar 

  • Jocelyn PC (1972) Biochemistry of -SH group: the occurrence, chemical properties and biological function of thiols and disulphides. Academic Press, London, pp 47, 122

    Google Scholar 

  • Kaya C, Sonmez O, Aydemir S, Ashraf M, Dikiltas M (2013) Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.) J Plant Interact 8:234–241

    Article  CAS  Google Scholar 

  • Kaya C, Sonmez O, Ashraf M, Polat T, Tuna L, Aydemir S (2015a) Exogenous application of nitric oxide and thiourea regulates on growth and some key physiological processes in maize (Zea mays L.) plants under saline stress. Soil-Water J (special issue): 61–66

    Google Scholar 

  • Kaya C, Ashraf M, Sonmez O (2015b) Promotive effect of exogenously applied thiourea on key physiological parameters and oxidative defense mechanism in salt-stressed Zea mays L. plants. Turk J Bot 39:1–10

    Google Scholar 

  • Khanna P, Kaur K, Gupta AK (2015) Root biomass partitioning, differential antioxidant system and thiourea spray are responsible for heat tolerance in spring maize. Proc Natl Acad Sci India Sect B Biol Sci 87(2):351–359. doi:10.1007/s40011-015-0575-0

    Article  Google Scholar 

  • Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguent E (2007) Thioredoxins in chloroplasts. Curr Genet 51:343–365

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lupton FGH (1966) Translocation of photosynthetic assimilates in wheat. Ann Appl Biol 57:355–364

    Article  Google Scholar 

  • Mahatma MK, Bhatnagar R, Solanki RK, Mittal GK (2009) Effect of seed soaking treatments on salinity induced antioxidant enzymes activity, lipid peroxidation and free amino acid content in wheat (Triticum aestivum L.) leaves. Indian J Agric Biochem 22:108–112

    CAS  Google Scholar 

  • Maloof F, Soodak M (1961) Cleavage of disulfide bonds in thyroid tissue by thiourea. J Biol Chem 236:1689–1692

    CAS  PubMed  Google Scholar 

  • Mathur N, Singh J, Bohra S, Bohra A, Vyas A (2006) Improved productivity of mungbean by application of thiourea under arid conditions. World J Agric Sci 2:185–187

    Google Scholar 

  • Meyer AJ, Hell R (2005) Glutathione homeostasis and redox regulation by sulfhydryl groups. Photosynth Res 86:435–457

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160

    Article  CAS  PubMed  Google Scholar 

  • Millar AH, Mittova V, Kiddle G (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathawat NS, Nair JS, Kumawat SM, Yadav NS, Singh G, Ramaswamy NK, Sahu MP, D’Souza SF (2007) Effect of seed soaking with thiols on antioxidant enzymes and photosystem activities in wheat subjected to water stress. Biol Plant 51:93–97

    Article  CAS  Google Scholar 

  • Noctor G (2006) Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Satoh K, Al-Shammari T, Shimizu T, Sasaya T, Omura T, Kikuchi S (2012) The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem Biophys Res Commun 423:417–423

    Article  CAS  PubMed  Google Scholar 

  • Pandey M, Srivastava AK, D’Souza SF, Penna S (2013) Thiourea, a ROS scavenger, regulates source-to-sink relationship to enhance crop yield and oil content in Brassica juncea (L.) PLoS One 8:e73921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul MJ, Foyer C-H (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  CAS  PubMed  Google Scholar 

  • Porter JR, et al. (2014) In: Field CB et al. (eds) Climate change; impacts, adaptation, and vulnerability, part a: global and sectoral aspects. Cambridge University Press, New York, pp 485–533

    Google Scholar 

  • Procuranti B, Connon SJ (2007) A reductase-mimicking thiourea organocatalyst incorporating a covalently bound NADH analogue: efficient 1,2-diketone reduction with in situ prosthetic group generation and recycling. Chem Commun 14(14):1421–1423

    Article  Google Scholar 

  • Ramaswamy NK, Nathawat NS, Nair JS, Sharma HR, Kumawat SM, Singh G, Sahu MP, D’Souza SF (2007) Effect of seed soaking with sulphydryl compounds on the photochemical efficiency and antioxidant defence system during the growth of pearl millet under water limiting environment. Photosynthetica 45:477–480

    Article  CAS  Google Scholar 

  • Rossi M, Bermudez L, Carrari F (2015) Crop yield: challenges from a metabolic perspective. Curr Opin Plant Biol 25:79–89

    Article  CAS  PubMed  Google Scholar 

  • Sahu MP, Singh D (1995) Role of thiourea in improving productivity of wheat (Triticum aestivum L.) J Plant Growth Regul 14:169–173

    Article  CAS  Google Scholar 

  • Sahu MP, Solanki NS (1991) Role of sulphydryl compounds in improving dry matter partitioning and grain production of maize (Zea mays L.) J Agron Crop Sci 167:356–359

    Article  CAS  Google Scholar 

  • Sahu MP, Solanki NS, Dashora LN (1993) Effects of thiourea, thiamine and ascorbic acid on growth and yield of maize (Zea mays L.) J Agron Crop Sci 171:65–69

    Article  CAS  Google Scholar 

  • Sahu MP, Rathore PS, Kumawat SM, Singh G, Ramaswamy NK, D’Souza SF (2006) Role of sulphydryl bioregulators for improving productivity of arid zone crops. Rajasthan Agricultural University, Bikaner, Research Bulletin, RAU-BARC, Directorate of Research, p 20

    Google Scholar 

  • Sangeetha R (2013) Effect of salinity induced stress and its alleviation on the activity of amylase in the germinating seeds of Zea mays. Int J Basic Life Sci 1:1–9

    Google Scholar 

  • Schurmann P, Buchanan BB (2008) The Ferredoxin/Thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) Adaptation of higher plants to stresses and stress signal transduction. Acta Ecol Sin 25:1871–1882

    Google Scholar 

  • Shao HB, Chen XY, Chu LY et al (2006) Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Biointerfaces 53:113–119

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Wu G et al (2007a) Changes of some antioxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Biointerfaces 54:143–149

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Jang SY, Li FM et al (2007b) Some advances in plant stress physiology and their implications in the systems biology era. Biointerfaces 54:33–36

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LX, Cheruth AJ, Zhao CX (2008) Water-deficit-induced anatomical changes in higher plants. CR Biol 331:215–225

    Article  Google Scholar 

  • Sharma GK (1988) Effect of soil-applied sulphur and select chemicals on dry matter partitioning and grain production efficiency of pearl millet. M.Sc.(Ag.) thesis, Department of Agronomy, Rajasthan College of Agriculture, Udaipur, Rajasthan Agricultural University, Bikaner (India)

    Google Scholar 

  • Siddiqui MZ, Yadav RA, Khan N (2014) Agro-techniques to overcome drought stress for yield maximization in pearlmillet (Pennisetum glaucum) under rainfed conditions. Plant Archiv 14:999–1000

    Google Scholar 

  • Song Y, Cui J, Zhang H, Wang G, Zhao FJ, Shen Z (2012) Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant Soil 366(1/2):647–658. doi:10.1007/s 11104-012-1458-2

  • Srivastava AK, Nathawat NS, Ramaswamy NK, Sahu MP, Singh G, Nair JS, Paladi RK, D’Souza SF (2008) Evidence for thiol-induced enhanced in situ translocation of 14C-sucrose from source to sink in Brassica juncea. Environ Exp Bot 64:250–255

    Article  CAS  Google Scholar 

  • Srivastava AK, Ramaswamy NK, Suprasanna P, D’Souza SF (2010) Genome-wide analysis of thiourea-modulated salinity-responsive transcripts in seeds of Brassica juncea: identification of signalling and effector components of stress tolerance. Ann Bot 106:663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava AK, Srivastava SP, Suprasanna P, D’Souza SF (2011) Thiourea orchestrates regulation of redox state and antioxidant responses to reduce the NaCl-induced oxidative damage in Indian mustard (Brassica juncea L.) Plant Physiol Biochem 49:676–686

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2007) Plant responses to drought, salinity and extreme temperature towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  Google Scholar 

  • Wardlaw IF (1968) The control and pattern of movement of carbohydrates in plants. Bot Rev 34:79–105

    Article  Google Scholar 

  • Wardlaw IF (1980) Translocation and source – sink relationship. In: Carlson PS (ed) The biology of crop productivity. Academic Press, New York, pp 297–339

    Chapter  Google Scholar 

  • Wheeler T et al (2000) Temperature variability and the yield of annual crops. Agric Ecosyst Environ 82:159–167

    Article  Google Scholar 

  • Wright STC, Hiron RWP (1969) (+ −) abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224:719–720

    Article  CAS  Google Scholar 

  • Zagorchev L, Seal CE, Kranner L, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sahu, M.P. (2017). Thiourea: A Potential Bioregulator for Alleviating Abiotic Stresses. In: Minhas, P., Rane, J., Pasala, R. (eds) Abiotic Stress Management for Resilient Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5744-1_11

Download citation

Publish with us

Policies and ethics