Advertisement

Robust Feature Matching for Architectural Scenes

  • Prashanth Balasubramanian
  • Vinay Kumar Verma
  • Moitreya Chatterjee
  • Anurag Mittal
Chapter

Abstract

We perform a comparative evaluation of four feature descriptors for the task of feature matching in panorama stitching of images taken from architectural scenes and archaeological sites. Such scenes are generally characterized by structured objects that vary in their depth and large homogeneous regions. We test SIFT, LIOP, HRI and HRI-CSLTP descriptors on four different categories of images: well structured with some depth variations, partially homogeneous with large depth variations, nearly homogeneous with a little amount of structural details and illumination-variant. HRI-CSLTP and SIFT perform on par with each other and are better than the others on many of the test scenarios while LIOP performs well when the intensity changes are complex. We also study techniques used in measuring the dissimilarity of descriptors. Cross-bin measures that compare the value of a bin with all the other bins are useful when the changes induced on the descriptors are complex. Nevertheless, ‘heavy’ bins which represent common but insignificant features can dominate the computation of the dissimilarity values while ‘light’ bins that represent rare, yet significant features can be suppressed. We propose a cross-bin comparison technique that measures the dissimilarity between the given descriptors by boosting the significance of ‘light’ bins and suppressing the significance of ‘heavy’ bins. The proposed technique is tested on the problem of SIFT keypoint matching when changes in viewpoint, illumination and blurring occur and is found to perform better than the baseline dissimilarity measures like the Earth mover’s, Euclidean and the Chi-squared distances.

References

  1. 1.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110CrossRefGoogle Scholar
  2. 2.
    Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) The proceedings of the 9th European conference on computer vision, vol 3951 of Lecture notes in computer science. Springer, Heidelberg, pp 404–417Google Scholar
  3. 3.
    Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27:1615–1630CrossRefGoogle Scholar
  4. 4.
    Ke Y, Sukthankar R (2004) Pca-sift: a more distinctive representation for local image descriptors. In: The proceedings of the IEEE conference on computer vision and pattern recognition, vol 2, pp II–506–II–513Google Scholar
  5. 5.
    Mori G, Belongie S, Malik J (2005) Efficient shape matching using shape contexts. IEEE Trans Pattern Anal Mach Intell 27:1832–1837CrossRefMATHGoogle Scholar
  6. 6.
    Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27:1265–1278CrossRefGoogle Scholar
  7. 7.
    Mikolajczyk K, Matas J (2007) Improving descriptors for fast tree matching by optimal linear projection. In: The proceedings of the eleventh IEEE international conference on computer vision, pp 1–8Google Scholar
  8. 8.
    Freeman W, Adelson E (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13:891–906CrossRefGoogle Scholar
  9. 9.
    Zabih R, Woodfill J (1994) Non-parametric local transforms for computing visual correspondence. In: Eklundh JO (ed) The proceedings of the 3rd European conference on computer vision. Volume 801 of Lecture notes in computer science. Springer, Heidelberg, pp 151–158Google Scholar
  10. 10.
    Bhat DN, Nayar SK (1998) Ordinal measures for image correspondence. IEEE Trans Pattern Anal Mach Intell 20:415–423CrossRefGoogle Scholar
  11. 11.
    Mittal A, Ramesh V (2006) An intensity-augmented ordinal measure for visual correspondence. Proc IEEE Conf Comput Vis Pattern Recogn 1:849–856Google Scholar
  12. 12.
    Tang F, Lim SH, Chang N, Tao H (2009) A novel feature descriptor invariant to complex brightness changes. In: The proceedings of the IEEE conference on computer vision and pattern recognition, pp 2631–2638Google Scholar
  13. 13.
    Gupta R, Patil H, Mittal A (2010) Robust order-based methods for feature description. In: The proceedings of the IEEE conference on computer vision and pattern recognition, pp 334–351Google Scholar
  14. 14.
    Wang Z, Fan B, Wu F (2011) Local intensity order pattern for feature description. In: The Proceedings of the thirteenth IEEE international conference on computer vision, pp 603–610Google Scholar
  15. 15.
    Fan B, Wu F, Hu Z (2012) Rotationally invariant descriptors using intensity order pooling. IEEE Trans Pattern Anal Mach Intell 34:2031–2045CrossRefGoogle Scholar
  16. 16.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987Google Scholar
  17. 17.
    Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42:425–436CrossRefMATHGoogle Scholar
  18. 18.
    Calonder M, Lepetit V, Ozuysal M, Trzcinski T, Strecha C, Fua P (2012) BRIEF: computing a local binary descriptor very fast. IEEE Trans Pattern Anal Mach Intell 34:1281–1298CrossRefGoogle Scholar
  19. 19.
    Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to Sift or Surf. In: The proceedings of the thirteenth IEEE international conference on computer vision. IEEE, pp 2564–2571Google Scholar
  20. 20.
    Leutenegger S, Chli M, Siegwart R (2011) BRISK: binary robust invariant scalable keypoints. In: The proceedings of the thirteenth IEEE international conference on computer visionGoogle Scholar
  21. 21.
    Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: fast retina keypoint. In: The proceedings of the IEEE conference on computer vision and pattern recognition, pp 510–517Google Scholar
  22. 22.
    Miksik O, Mikolajczyk K (2012) Evaluation of local detectors and descriptors for fast feature matching. In: The 21st international conference on pattern recognition, pp 2681–2684Google Scholar
  23. 23.
    Heinly J, Dunn E, Frahm JM (2012) Comparative evaluation of binary features. In: Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C (eds) The proceedings of the 12th European conference on computer vision. Volume 7573 of Lecture notes in computer science. Springer, Heidelberg, pp 759–773Google Scholar
  24. 24.
    Balasubramanian P, Verma VK, Mittal A (2015) A performance evaluation of feature descriptors for image stitching in architectural images. In: Jawahar CV, Shan S (eds) Computer vision—ACCV 2014 workshops, Singapore, Singapore, November 1–2, 2014, Revised selected papers, Part II, pp 517-528. Springer. https://doi.org/10.1007/978-3-319-16631-5_38
  25. 25.
    Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65:43–72CrossRefGoogle Scholar
  26. 26.
    Vedaldi A, Fulkerson B (2008) VLFeat: an open and portable library of computer vision algorithms. http://www.vlfeat.org/
  27. 27.
    Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40:99–121CrossRefMATHGoogle Scholar
  28. 28.
    Hafner J, Sawhney HS, Equitz W, Flickner M, Niblack W (1995) Efficient color histogram indexing for quadratic form distance functions. IEEE Trans Pattern Anal Mach Intell 17:729–736Google Scholar
  29. 29.
    Mukherjee J, Mukhopadhyay J, Mitra P (2014) A survey on image retrieval performance of different bag of visual words indexing techniques. In: The proceedings of the IEEE students’ technology symposium (TechSym)Google Scholar
  30. 30.
    Zelnik-Manor L, Irani M (2001) Event-based analysis of video. In: The proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp II–123Google Scholar
  31. 31.
    Pele O, Werman M (2010) The quadratic-chi histogram distance family. In: Daniilidis K, Maragos P, Paragios N (eds) The proceedings of the 11th European conference on computer vision. Volume 6312 of Lecture notes in computer science. Springer, Heidelberg, pp 749–762Google Scholar
  32. 32.
    Pele O, Werman M (2009) Fast and robust earth mover’s distances. In: The proceedings of the twelfth IEEE international conference on computer vision, pp 460–467Google Scholar
  33. 33.
    Pele O, Werman M (2008) A linear time histogram metric for improved SIFT matching. In: The proceedings of the tenth European conference on computer vision, pp 495–508Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Prashanth Balasubramanian
    • 1
  • Vinay Kumar Verma
    • 2
  • Moitreya Chatterjee
    • 1
  • Anurag Mittal
    • 1
  1. 1.Indian Institute of Technology MadrasChennaiIndia
  2. 2.Indian Institute of Technology KanpurKanpurIndia

Personalised recommendations