Advertisement

Plasma Surface Metallurgy of Titanium and Titanium Alloys

  • Zhong XuEmail author
  • Frank F. Xiong
Chapter

Abstract

Titanium, known as the “aerospace material” or “marine material,” is an indispensable material in the modern industry. Due to its low hardness and poor thermal conductivity, the surface of titanium is prone to adhesion under a friction condition. In some special media, the passivation film on the titanium surface loses its protective ability and shows the strong chemical activity. As a consequence, proper surface modification for its physical, chemical, or mechanical property change is required for some specific applications. This chapter is to introduce Plasma Surface Metallurgy on Titanium matrix and Titanium Alloys by the double glow plasma surface alloying technology to enhance wear-, corrosion- and flame resistance.

References

  1. 1.
    Xu Z (2008) Plasma surface metallurgy. China Science Press, BeijingGoogle Scholar
  2. 2.
    Li XY (2003) Tribological behavior of molybdenum alloying layer on Ti6Al4V by double glow discharge technology. Tribology 23(2):108Google Scholar
  3. 3.
    Li XY (2003) Preparation of molybdenum nitride hard coating by double glow discharge technique. Chin J Nonferrous Met 13(4):984Google Scholar
  4. 4.
    Qin L (2005) Friction and wear behavior of Mo–N diffusion layer on Ti6Al4V alloy surface. Rare Met Mater Eng 34(9):1465Google Scholar
  5. 5.
    Qin YM, Fan A, Qin L (2005) Study on corrosion behavior of plasma Mo–N modified titanium in artificial blood solution. Phys Test Chem Anal Part A: Phys Test 41(3):117Google Scholar
  6. 6.
    Hu HJ (2005) Electrochemical behavior of Mo–N modified layer on pure titanium with plasma surface alloying technique. Rare Met Lett 24(11):21Google Scholar
  7. 7.
    Wang JY (1995) Development of flame retardant titanium in Russia. Aeronaut Sci Technol 3:38–40Google Scholar
  8. 8.
    Appel F, Brossmann U (2000) Recent progress in the development of gamma titanium aluminide alloys. Adv Eng Mater 2(11):699–720CrossRefGoogle Scholar
  9. 9.
    Zhang PZ, Xu Z, Zhang GH (2005) Preparation of double glow plasma surface metallurgy treated Ti–Cu flame-resistant alloy. Chin J Nonferrous Met 15(1):110–115Google Scholar
  10. 10.
    Zhang PZ, Xu Z, Zhang GH (2005) Study of surface flame-resistant Ti–Cu titanium alloy. Rare Met Mater Eng 34(1):162–165Google Scholar
  11. 11.
    Zhang PZ, Li ZH, He ZY (2005) Surface chromizing of Ti-6Al-4V by double glow plasma surface alloying technology. Ordnance Mater Sci Eng 28(1):18–25Google Scholar
  12. 12.
    Zhang PZ, Xu Z, Zhang GH (2007) Surface plasma chromized flame-resistant titanium alloy. Surf Coat Technol 201:4884–4887CrossRefGoogle Scholar
  13. 13.
    Zhang PZ (2004) Double glow plasma surface alloying burn-resisatnt titanium alloy. Taiyuan University of Technology, TaiyuanGoogle Scholar
  14. 14.
    Zhang PZ, Xu Z, Zhang GH (2005) Double glow plasma surface molybdenizing of pure Ti and Ti-6Al-4V. J Nanjing Univ Aeronaut Astronaut 37(5):582–586Google Scholar
  15. 15.
    He ZY, Wang ZX (2007) Surface Modification of Titanium Alloy Ti6Al4V by plasma niobium alloying process. Surf Coat Technol 201:5705–5709CrossRefGoogle Scholar
  16. 16.
    Wang WB, Xu Z, He ZY (2007) Study on double-glow plasma niobium surface alloying of pure titanium. Vacuum 81:937–942CrossRefGoogle Scholar
  17. 17.
    Xu CY (2002) Development and application on corrosion resistant titanium alloys. Total Corros Control 16(6):6–11Google Scholar
  18. 18.
    Li ZX, Du JH, Gao GR (2006) Performance of Ti–Pd coating titanium surface prepared by double glow plasma technology. Rare Met Mater Eng 35(8):1239–1242Google Scholar
  19. 19.
    Wang ZX, He ZY, Wang WB (2007) Effect of Nb surface alloying on corrosion behavior of Ti6Al4V. Corros Sci Prot Technol 19(3):196–199Google Scholar
  20. 20.
    Xu CY (2002) Titanium corrosion hydrogen brittleness and protection measures. Total Corros Control 16(1):7–10Google Scholar
  21. 21.
    Zhang GH, Zhang PZ, Ge HL (2007) The preparaiton processing parameter study of the double glow discharge plasma hydrogen-free carburizing on titanium alloy surface. Trans Mater Heat Treat 28:110–113Google Scholar
  22. 22.
    Zhang GH, He ZY (2005) Mechanical and tribological properties of Ti6Al4V hardened by double glow plasma hydrogen-free carbonitriding. Mater Sci Forum 475–479:3951–3954CrossRefGoogle Scholar
  23. 23.
    Zhang GH (2004) Research hydrogen-free carburising and hydrogen-free carbonitriding on titanium and titanium alloy Ti6A14V by double glow plasma discharge. Taiyuan University of Technology, TaiyuanGoogle Scholar
  24. 24.
    Zhang GH, Pan JD, He ZY (2005) Double glow plasma hydrogen-free carburizing on commercial purity titanium. J Wuhan Univ Technol Mater Sci Ed 20(4):80–82CrossRefGoogle Scholar
  25. 25.
    Zhang GH, Zhang PZ, Pan JD (2005) Research of tribological characteristics of double glow plasma hydrogen-free carbonitriding on titanium alloys. Rare Met Mater Eng 34:1646–1649Google Scholar
  26. 26.
    Ji SC (2014) The research of non hydrogen carburizing coating on titanium alloy by glow plasma method. XAUAT, XianGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Taiyuan University of TechnologyTaiyuanChina
  2. 2.Heaptech Engineering, Inc.San JoseUSA

Personalised recommendations