Skip to main content

Global Climate Pattern Behind Hydrological Extremes in Central India

  • Conference paper
  • First Online:
Climate Change Impacts

Part of the book series: Water Science and Technology Library ((WSTL,volume 82))

  • 829 Accesses

Abstract

The concurrent influence of large-scale, coupled oceanic–atmospheric circulation patterns was established to have an effect on hydrologic variability across the world. El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are, in particular, important for Indian hydroclimatology. However, it is now established that rather than just a few well-known teleconnection patterns, a Global Climate Pattern (GCP) comprising of a global field of several climate anomalies are responsible for above-normal and below-normal precipitation events over entire India. The existence of a GCP for hydrological extremes in an even smaller spatial scale is illustrated in this study. The central part of India, consisting of the contiguous homogeneous meteorological subdivisions—West Madhya Pradesh, East Madhya Pradesh, Vidarbha, and Chattisgarh (hereinafter ‘central India’), is selected as the study area. Hydrological extremes (this study focus on precipitation) in the study area are identified in terms of the Standardized Precipitation Anomaly Index (SPAI), which is suitable for quantifying extreme events in a monsoon-dominated climatology. After investigation of the global anomaly fields of five climate variables, a set of 19 specific zones of climate anomalies from across the world are found to constitute the GCP for the hydrological extremes in the study region. The identified GCP is further utilized in a Support Vector Machine (SVM) model to investigate the potential of the GCP in foreseeing dry and wet extremes over the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anirudh V, Umes CK (2007) Classification of rainy days using SVM. In: Proceedings of Symposium at HYDRO, Norfolk, Virginia, USA

    Google Scholar 

  • Bhagwat PP, Maity R (2012) Multistep-ahead river flow prediction using LS-SVR at daily scale. J Water Resour Prot 4:528–539. doi:10.4236/jwarp.2012.47062

    Article  Google Scholar 

  • Brandimarte L, Di Baldassarre G, Bruni G, D’Odorico P, Montanari A (2011) Relation between the north-atlantic oscillation and hydroclimatic conditions in mediterranean areas. Water Resour Manag 25(5):1269–1279

    Article  Google Scholar 

  • Bray M, Han D (2004) Identification of support vector machines for runoff modelling. J Hydroinform 6:265–280

    Google Scholar 

  • Chanda K, Maity R (2015) Meteorological drought quantification with standardized precipitation anomaly index (SPAI) for the regions with strongly seasonal and periodic precipitation. J Hydrol Eng ASCE 06015007-1–06015007-7. doi:10.1061/(ASCE)HE.1943-5584.0001236

  • Chanda K, Maity R (2016) Uncovering global climate fields causing local precipitation extremes. Hydrol Sci J. doi:10.1080/02626667.2015.1006232 (Taylor and Francis)

  • Chen H, Guo J, Wei X (2010) Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang basin. Adv Atmos Sci 27(2):274–284. doi:10.1007/s00376-009-8071-1

  • Chiew FHS, McMahon TA (2002) Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol Sci J 47(3):505–522

    Article  Google Scholar 

  • Feng S, Hu Q (2008) How the North Atlantic multidecadal oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys Res Lett 35:L01707. doi:10.1029/2007GL032484

    Article  Google Scholar 

  • Fu G, Yu J, Yu X, Ouyang R, Zhang Y, Wang P, Liu W, Min L (2013) Temporal variation of extreme rainfall events in China, 1961–2009. J Hydrol. doi:10.1016/j.jhydrol.2013.02.021

  • Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31:L12213. doi:10.1029/2004GL019733

    Article  Google Scholar 

  • Gibbons JD, Chakraborti S (2011) Nonparametric statistical inference, 5th edn. Chapman and Hall, Boca Raton

    Google Scholar 

  • Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. doi:10.1029/2005GL024803

    Google Scholar 

  • Gu W, Li C, Li W, Zhou W, Chan JCL (2009) Interdecadal unstationary relationship between NAO and east China’s summer precipitation patterns. Geophys Res Lett 36:L13702. doi:10.1029/2009GL038843

    Article  Google Scholar 

  • Jiang P, Gautam M, Zhu J, Yu Z (2013) How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States? J Hydrol 479:75–85. doi:10.1016/j.jhydrol.2012.11.041

    Article  Google Scholar 

  • Jolliffe IT (1986) Principal component analysis. Springer, New York

    Book  Google Scholar 

  • King AD, Alexander LV, Donat MG (2013) Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys Res Lett 40:2271–2277. doi:10.1002/grl.50427

    Article  Google Scholar 

  • Kişi O, Çimen M (2009) Evapotranspiration modelling using support vector machines. Hydrol Sci J 54(5):918–928

    Article  Google Scholar 

  • Li S, Perlwitz J, Quan X, Hoerling MP (2008) Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys Res Lett 35:L05804. doi:10.1029/2007GL032901

    Google Scholar 

  • Lin J-Y, Cheng C-T, Chau K-W (2006) Using support vector machines for long-term discharge prediction. Hydrol Sci J 51(4):599–612

    Article  Google Scholar 

  • Maity R, Nagesh Kumar D (2006) Hydroclimatic association of the monthly summer monsoon rainfall over India with large-scale atmospheric circulations from tropical Pacific Ocean and the Indian Ocean region. Atmos Sci Lett 7:101–107. doi:10.1002/asl.141(RMetS)

    Article  Google Scholar 

  • Maity R, Nagesh Kumar D (2008) Basin-scale stream-flow forecasting using the information of large-scale atmospheric circulation phenomena. Hydrol Process 22(5):643–650. doi:10.1002/hyp.6630

    Article  Google Scholar 

  • Maity R, Bhagwat PP, Bhatnagar A (2010) Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol Process 24:917–923. doi:10.1002/hyp.7535

    Article  Google Scholar 

  • Maity R, Ramadas M, Govindaraju RS (2013) Identification of hydrologic drought triggers from hydro-climatic predictor variables. Water Resour Res Am Geophys Union 49(7):4476–4492. doi:10.1002/wrcr.20346

    Article  Google Scholar 

  • Mo KC, Schemm JE (2008) Relationships between ENSO and drought over the southeastern United States. Geophys Res Lett 35:L15701. doi:10.1029/2008GL034656

    Article  Google Scholar 

  • Oubeidillah AA, Tootle G, Anderson S-R (2012) Atlantic Ocean sea-surface temperatures and regional streamflow variability in the Adour-Garonne basin, France. Hydrol Sci J 57(3):496–506

    Article  Google Scholar 

  • Panda DK, Kumar K, Ghosh S, Mohanty RK (2013) Streamflow trends in the Mahanadi River basin (India): linkages to tropical climate variability. J Hydrol. doi:10.1016/j.jhydrol.2013.04.054

  • Parthasarathy B, Munot AA, Kothaale DR (1995) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217–224

    Article  Google Scholar 

  • Pearson K (1904) On the theory of contingency and its relation to association and normal correlation. Draper’s Comp Res Mem Biometric Ser I, Dulau and Co., London, U.K

    Google Scholar 

  • Philipp A, Della-Marta PM, Jacobeit J, Fereday DR, Jones PD, Moberg A, Wanner H (2007) Long-term variability of daily North Atlantic-European pressure patterns since 1850 classified by simulated annealing clustering. J Clim 20:4065–4095

    Article  Google Scholar 

  • Qin Z, Yu Q, Li J, Wu Z, Hu B (2005) Application of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland. J Zhejiang Univ Sci B 6(6):491–495. doi:10.1631/jzus.2005.B0491

    Article  Google Scholar 

  • Qiu Y, Cai W, Guo X, Ng B (2014) The asymmetric influence of the positive and negative IOD events on China’s rainfall. Sci Rep 4:4943. doi:10.1038/srep04943

    Article  Google Scholar 

  • Raghavendra NS, Deka PC (2014) Support vector machine applications in the field of hydrology: a review. Appl Soft Comput 19:372–386. doi:10.1016/j.asoc.2014.02.002

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91(3):296–306

    Google Scholar 

  • Rogers JC (2013) The 20th century cooling trend over the southeastern United States. Clim Dyn 40(1–2):341–352

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Samsudin R, Saad P, Shabri A (2011) River flow time series using least squares support vector machines. Hydrol Earth Syst Sci 15:1835–1852. doi:10.5194/hess-15-1835-2011

    Article  Google Scholar 

  • She N, Basketfield D (2005) Long range forecast of streamflow using support vector machine. In: Walton R (ed) Proceedings of the world water and environment resources congress ASCE, 15–19 May 2005, Anchorage: Alaska, USA. doi:10.1061/40792(173)481

  • Singhrattna N, Babel MS, Perret SR (2012) Hydroclimate variability and long-lead forecasting of rainfall over Thailand by large-scale atmospheric variables. Hydrol Sci J 57(1):26–41

    Article  Google Scholar 

  • Terray P, Delecluse P, Labattu S, Terray L (2003) Sea surface temperature associations with the late Indian summer monsoon. Clim Dyn. doi:10.1007/s00382-003-0354-0

  • Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705. doi:10.1029/2011GL048712

    Article  Google Scholar 

  • Tripathi SH, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climate change scenarios: a support vector machine approach. J Hydrol 330:621–640

    Article  Google Scholar 

  • Viswambharan N, Mohanakumar K (2014) Modulation of Indian summer monsoon through northern and southern hemispheric extra-tropical oscillations. Clim Dyn. doi:10.1007/s00382-014-2049-0 (Springer, Article in press)

  • Wang B, Liu J, Kim H, Yim S, Xiang B (2013) Northern hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci USA. doi:10.1073/pnas.1219405110

  • Webster PJ, Moore A, Loschnigg J, Leban M (1999) Coupled dynamics in the Indian Ocean during 1997–1998. Nature 401:356–360

    Article  Google Scholar 

  • Willems P (2013) Multidecadal oscillatory behaviour of rainfall extremes in Europe. Clim Change 120(4):931–944. doi:10.1007/s10584-013-0837-x

    Article  Google Scholar 

  • Wu R, Zhang L (2010) Biennial relationship of rainfall variability between Central America and equatorial South America. Geophys Res Lett 37:L08701. doi:10.1029/2010GL042732

    Google Scholar 

  • Ye J-S (2014) Trend and variability of China’s summer precipitation during 1955–2008. Int J Climatol 34:559–566. doi:10.1002/joc.3705

    Article  Google Scholar 

  • Zakaria ZA, Shabri A (2012) Streamflow forecasting at ungaged sites using support vector machines. Appl Math Sci 6(60):3003–3014

    Google Scholar 

Download references

Acknowledgements

This study is partially supported by the Ministry of Earth Science (MoES), Government of India, through sponsored Project No. MoES/PAMC/H&C/30/2013-PC-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Maity .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chanda, K., Maity, R. (2018). Global Climate Pattern Behind Hydrological Extremes in Central India. In: Singh, V., Yadav, S., Yadava, R. (eds) Climate Change Impacts. Water Science and Technology Library, vol 82. Springer, Singapore. https://doi.org/10.1007/978-981-10-5714-4_6

Download citation

Publish with us

Policies and ethics