Skip to main content

Analysis of Spring Discharge in the Lesser Himalayas: A Case Study of Mathamali Spring, Aglar Watershed, Uttarakhand

  • Conference paper
  • First Online:
Book cover Water Resources Management

Part of the book series: Water Science and Technology Library ((WSTL,volume 78))

Abstract

In a hilly terrain, water from spring is one of the main sources of domestic water supply. There is a huge concern in relation to spring discharge, i.e. drying up or becoming seasonal in this region. For better understanding of spring discharge behaviour, this study applied various methods of recession curve and time series. Specific objectives of this study are (i) to compare recession curves using simple exponential, hyperbola and least square methods, (ii) to develop the autocorrelation of spring discharge and rainfall series and (iii) to analyse the flow duration curve using mean daily spring discharge data. A fracture- and contact-type spring located in the Aglar watershed of the Yamuna River basin has been instrumented for collection of continuous discharge data (Feb 2014–July 2015). Recession curve analysis using the method of least square found to be more accurate than exponential and hyperbola for six selected events with NSE (0.82–0.94) and RMSE (0.14–1.08). Flow duration curve analysis reveals that 90% of measured data is less than 23 lpm which can be taken as the characteristic value for minimum spring flow. Results of this study will be useful for conserving the spring discharge during the monsoon period and for various watershed management practices, such as developing a sustainable irrigation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaouze CM (1989) Reservoir releases to uses with different reliability requirements. Water Resour Bull 25(6):1163–1168

    Article  Google Scholar 

  • Amit H, Lyakhovsky V, Katz A, Starinsky A, Burg A (2002) Interpretation of spring recession curves. Ground Water 40:543–551

    Article  CAS  Google Scholar 

  • Anderson MG, Burt TP (1980) Interpretation of recession flow. J Hydro 46:89–101

    Article  Google Scholar 

  • Angelini P (1997) Correlation and spectral analysis of two hydrogeological systems in Central Italy. Hydrol Sci J 42:425–438

    Article  CAS  Google Scholar 

  • Baedke SJ, Krothe NC (2001) Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis. Water Resour Res 37(1):13–19

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  CAS  Google Scholar 

  • Barnes BS (1939) The structure of baseflow recession curve. Trans Am Geophys Union 20:721–725

    Article  Google Scholar 

  • Bonacci O (1993) Karst spring hydrographs as indicators of karst aquifers. Hydrol Sci J des Sci Hydrol 38(l):51–62

    Google Scholar 

  • Boussinesq J (1904) Recherches theoriques sur lecoulement des nappes deau infiltrees dans le sol et sur le debit des sources. J Math Pure Appl 10:5–78

    Google Scholar 

  • Boussinesq J (1877) Essai sur la throrie des eaux courantes. M&noires prrsentrs par divers savants a lAcademie des Sciences de lInstitut National de France, Tome XXIII, No. 1

    Google Scholar 

  • Boussinesq J (1903) Surun mode simple decoulement des nappes deau dinfiltration a lit horizontal, avec rebord vertical tout autour lorsquune partie de ce rebord est enlevee depuis lasurface jusquaufond. C R Acad Sci 137:5–11

    Google Scholar 

  • Brutsaert W, Nieber JL (1977) Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour Res 34:233–240

    Article  Google Scholar 

  • Chaulagain NP (2006) Impacts of climate change on water resources of Nepal: the physical and socioeconomic dimensions. Unpublished Ph.D. Thesis, International Institute of Management, Energy and Environment Management, University of Flensburg, Germany

    Google Scholar 

  • Chow VT (1964) Handbook of applied hydrology. Mc-Graw Hill Book Co., New York

    Google Scholar 

  • Cross WP, Bernhagen RJ (1949) Flow duration. Ohio streamflow characteristics, Bull. 10, part 1, Ohio Dept. of Natural Resour., Div. of Water

    Google Scholar 

  • Dewandel B, Lachassagneb P, Bakalowicz M, Wengb P, Al-Malki A (2003) Evaluation of aquifer thickness by analysing recession hydrographs. Application to the evaluation Oman ophiolite hardrock aquifer. J Hydrol 274:248–269. doi:10.1016/S0022-1694(02)00418-3

    Article  Google Scholar 

  • Dingman SL (1978) Synthesis of flow-duration curves for unregulated streams in New Hampshire. Water Resour Bull 14(6):1481–1502

    Article  Google Scholar 

  • Dreiss SJ (1982) Linear kernel for karst aquifer. Water Resour Res 18:865–876

    Article  Google Scholar 

  • Duffy CJ, Gelhar LW (1986) A frequency domain analysis of groundwater quality fluctuations: interpretation of field data. Water Resour Res 22(7):1115–1128

    Article  CAS  Google Scholar 

  • Fennessey NM, Vogel RM (1990) Regional flow duration curves for ungaged sites in Massachusetts. Water Resour PIng Mgmt ASCE 116(4):530–549

    Google Scholar 

  • Fienberg SE (1979) Graphical methods in statistics. Am Statistician 33(4):165–178

    Google Scholar 

  • Fiorillo F, Doglioni A (2010) The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeol J 18(8):1881–1895. doi:10.1007/s10040-010-0666-1

    Article  Google Scholar 

  • Fiorillo F, Esposito L, Guadagno FM (2007) Analyses and forecast of the water resource in an ultra-centenarian spring discharge series from Serino (Southern Italy). J Hydrol 36:125–138

    Article  Google Scholar 

  • Fiorillo F, Wilson RC (2004) Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy). Eng Geol 75(3):263–289

    Article  Google Scholar 

  • Ford Derek, Williams PW (1989) Karst Geomorphology and Hydrology. Unwin Hyman, London, p 601

    Book  Google Scholar 

  • Foster HA (1934) Duration curves. Trans ASCE 99:1213–1267

    Google Scholar 

  • Francesco Fiorillo (2009) Spring hydrographs as indicators of droughts in a karst environment. J Hydrol 373:290–301

    Article  Google Scholar 

  • Gilman K (1977a) Dilution gauging on the recession limb: 1. Constant rate injection method. Hydrol Sci Bull 22:353–369

    Article  Google Scholar 

  • Gilman K (1977b) Dilution gauging on the recession limb: 2. The integration method. Hydrol Sci Bull 22(4):469–481

    Article  Google Scholar 

  • Hajkowicz S, Collins K (2007) A review of multiple criteria analysis for water resource planning and management. Water Resour Manag 21:1553–1566

    Article  Google Scholar 

  • Hall FR (1968) Base flow recessions—a review. Water Resour Res 4(5):973–983

    Article  Google Scholar 

  • Hansen DP, Ye W, Jakeman AJ, Cooke R, Sharma P (1996) Analysis of the effect of rainfall and streamflow data quality and catchment dynamics on streamflow prediction using the rainfall-runoff model IHACRES. Environ Softw 11(1–3):193–202

    Article  Google Scholar 

  • Hao Y, Liu G, Li H, Li Z, Zhao J, Yeh TJ (2012) Investigation of karstic hydrological processes of Niangziguan Springs (North China) using wavelet analysis. Hydrol Process 26(20):3062–3069

    Article  Google Scholar 

  • IIRS (1989) Geohydromorphology, soil, and vegetation land use mapping of Aglar watershed (U.P.) using remote sensing techniques

    Google Scholar 

  • James LD, Thompson WO (1970) Least squares estimation of constants in a linear recession model. Water Resour Res 6(4):1062–1069

    Article  Google Scholar 

  • Kiraly L (2002) Karstification and Groundwater Flow. In: Gabrovsek F (ed) Proceedings of the Conference on Evolution of Karst: from Prekarst to Cessation. Postojna-Ljubljana, pp 155–190

    Google Scholar 

  • Knisel WG (1963) Baseflow recession analysis for comparison of drainage basin and geology. J Geophys Res 68:3649–3653

    Article  Google Scholar 

  • Kovacic G (2010) Hydrogeological study of the Malenscica karst spring (SW Slovenia) by means of a time series analysis. Acta Carsologica 39(2):201–215

    Google Scholar 

  • Kovacs A, Perrochet P, Kiraly L, Jeannin P (2005) A quantitative method for characterisation of karst aquifers based on the spring hydrograph analysis. J Hydrol 303:152–164

    Article  Google Scholar 

  • Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs: engineering, theory, management, and sustainability. Elsevier

    Google Scholar 

  • Kresic N (1997) Quantitative solutions in hydrogeology and groundwater modeling: Boca Raton. CRC Lewis Publishers, 461 p

    Google Scholar 

  • Kunkle GR (1962) The baseflow duration curve, a technique for the study of groundwater discharge from a drainage basin. J Geophys Res 67:1543–1554

    Article  Google Scholar 

  • Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a karst aquifer (Charente, France). J Hydrol 205:217–231

    Article  Google Scholar 

  • Lastennet R, Mudry J (1997) Role of karstification and rainfall in the behaviour of a heterogeneous karst system. Environ Geol 32:114–123

    Article  CAS  Google Scholar 

  • Laurenson BE (1961) A study of hydrograph recession curves of an experimental catchment. J Inst Eng Aust 33:253–258

    Google Scholar 

  • Long AJ, Derickson RG (1999) Linear system analysis in a karst aquifer. J Hydrol 219:206–217

    Article  Google Scholar 

  • Maillet E (1905) Essai d’hydraulique souterraine et fluviale. Libraire Sci. A. Herman, Paris

    Google Scholar 

  • Male JW, Ogawa H (1984) Tradeoffs in water quality management. Water Resour PIng Mgmt 110(4):434–444

    Article  Google Scholar 

  • Malvicini CF, Tammo SS, Walter MT, Parlange J, Walter MF (2005) Evaluation of spring flow in the uplands of Matalom, Leyte, Philippines. Adv Water Resour 28:1083–1090. doi:10.1016/j.advwatres.2004.12.006

    Article  Google Scholar 

  • Mangin A (1984) Pour une meilleure connaissance des systemes hydrologiques a partir des analyses correlatoire et spectrale. J Hydrol 67:25–43. doi:10.1016/0022-1694(84)90230-0

    Article  Google Scholar 

  • Mangin A (1975) Contribution a letude hydrodynamique des aquiferes karstiques. Ph.D. These, Universitéde Dijon, p 124

    Google Scholar 

  • Middleton N, Thomas D (eds) (1997) World Atlas of desertification, 2nd edn. Arnold, London

    Google Scholar 

  • Milanovic PT (1981) Karst hydrogeology. Water Resources Publications, Littleton, p 434

    Google Scholar 

  • Mitchell WD (1957) Flow duration curves of Illinois streams. Illinois Department of Public Works and Buildings, Division of Waterways

    Google Scholar 

  • Negi GCS, Joshi V (2004) Rainfall and spring discharge patterns in two small drainage catchments in the Western Himalayan Mountains, India. Environmentalist 24:19–28

    Article  Google Scholar 

  • Negi GCS, Joshi V (1996) Geo-hydrology of springs in a mountain watershed: the need for problem solving research. Curr Sci 71(10):772–776

    CAS  Google Scholar 

  • Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89

    Article  Google Scholar 

  • Padilla A, Pulido-Bosh A, Mangin A (1994) Relative importance of base flow and quick flow from hydrographs of karst spring. Ground Water 32:267–277

    Article  Google Scholar 

  • Panagopoulos G, Lambrakis N (2006) The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: application on two typical karst aquifers of Greece (Trifilia, Almyros Crete). J Hydrol 329:368–376. doi:10.1016/j.jhydrol.2006.02.023

    Article  Google Scholar 

  • Pinault JL, Plagnes V, Aquilina L, Bakalowicz M (2001) Inverse modeling of the hydrological and hydrochemical behaviour of hydrosystems: characterization of karst system functioning. Water Resour Res 37(8):2191–2204

    Article  Google Scholar 

  • Russo SL et al. (2014) Recession hydrographs and time series analysis of springs monitoring data: application on porous and shallow aquifers in mountain areas (Aosta Valley). Environ Earth Sci 73(11):7415–7434 (2014)

    Google Scholar 

  • Sauter M (1992) Assessment of hydraulic conductivity in a karst aquifer at local and regional scale. Ground Water Manage 10:39–57

    Google Scholar 

  • Saville T, Watson JD (1933) An investigation of flow-duration characteristics of North Carolina streams. Am Geophys Union Trans, pp 406–425

    Google Scholar 

  • Searcy JK (1959) Flow duration curves. Water supply paper 1542-A, U.S. Geological Survey, Reston, Virginia

    Google Scholar 

  • Shevenell L (1996) Analysis of well hydrographs in a karst aquifer: estimates of specific yields and continuum transmissivities. J Hydrol 174:331–355

    Article  CAS  Google Scholar 

  • Singh KP (1971) Model flow duration and streamflow variability. Water Resour Res 7(4):1031–1036

    Article  Google Scholar 

  • Singh KP, Stall JB (1971) Derivation of base flow recession curves and parameters. Water Resour Res 7(2):292–303

    Article  Google Scholar 

  • Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240(3):147–186

    Article  Google Scholar 

  • Smart PL, Hobbs SL (1986) Characterization of carbonate aquifers: a conceptual base. In: Proceedings of the environmental problems in Karst Terranes and their solutions conference, Bowling Green, KY, pp 1–14

    Google Scholar 

  • Soulios G (1991) Contribution à lètude des coubes de recession des souces karstiques: example du pays hellènique. J Hydrol 124:29–42

    Article  Google Scholar 

  • Stevanovic Z (2010) Utilization and regulation of springs. In: Kresic N, Stevanovic Z (eds) Groundwater hydrology of springs: engineering, theory, management, and sustainability. Elsevier, Amsterdam, pp 339–388

    Chapter  Google Scholar 

  • Stitchler W, Hermann A (1982) Environmental isotopes as tracers in water balance studies of mountainous watersheds. In: Proceedings Berne Symposium on Hydrological Research Basins, vol 2, pp 357–368

    Google Scholar 

  • Sugiyama H (1996) Analysis and extraction of low flow recession characteristics. Water Resour Bull 32:491–497

    Article  Google Scholar 

  • Tarafdar S (2011) Understanding the dynamics of high and low spring flow: a key to managing the water resources in a small urbanized hill slope of Lesser Himalaya, India. Environ Earth Sci 70:2107–2114. doi:10.1007/s12665-011-1493-y

    Google Scholar 

  • Toebes C, Morrissey WB, Shorter R, Hendy M (1969) Base-flow-recession curves. In: Handbook of hydrological procedures. Proc. 8, Ministry of Works, Wellington, New Zealand

    Google Scholar 

  • Toebes C, Strang DD (1994) On recession curves, 1. J Hydrol, NZ, pp 2–15

    Google Scholar 

  • UNFCCC (2007) Climate change: impacts, vulnerabilities and adaptations in developing countries. Climate Change Secretariat (UNFCCC), Bonn, Germany

    Google Scholar 

  • Valdiya KS, Bartarya SK (1989) Diminishing discharges of mountain springs in a part of Kumaun Himalaya. Current Sci 58(8):417–426. ISSN 0011-3891

    Google Scholar 

  • Valdiya KS, Bartarya SK (1991) Hydrological studies of springs in the catchment of the Gaula River, Kumaun Lesser Himalaya, India. Mt Res Dev 11(3):239–258

    Article  Google Scholar 

  • Van de Griend AA, De Vries J, Seyhan E (2002) Groundwater discharge from areas with variable specific drainage resistance. J Hydrol 259:203–220

    Article  Google Scholar 

  • Vasileva D, Komatina M (1997) A contribution of the alpha recession coefficient investigation in karts terrains. Theor Appl Karstol 10:45–54

    Google Scholar 

  • Venetis C (1969) A study of the recession of unconfined aquifers. Bull Int Assoc Sci Hydrol 14(4):119–125

    Article  Google Scholar 

  • Vogel RM, Kroll CN (1992) Regional geohydrologic-geomorphic relationships for the estimation of low-flow statistics. Water Resour Res 28:2451–2458

    Article  Google Scholar 

  • Waltham AC (1971) Caving in Himalaya. Himalayan J 31:3

    Google Scholar 

  • Warnick CC (1984) Hydropower engineering. Prentice-Hall Inc., Englewood Cliffs, New Jersey, pp 59–73

    Google Scholar 

  • White WB (1988) Geomorphology and Hydrology of karst terrains. New York

    Google Scholar 

  • Yates P, Snyder WM (1975) Predicting recessions through convolution. Water Resour Res 11(3):418–422

    Article  Google Scholar 

  • Ye W, Hansen DP, Jakeman AJ, Sharma P, Cooke R (1997) Assessing the natural variability of runoff: Clarence Basin catchments, NSW, Australia. Math Comput Simul 43(3–6):251–260

    Article  Google Scholar 

  • Youngs EG (1985a) Characterization of hydrograph recession of land drains. J Hyd 82:17–25

    Article  Google Scholar 

  • Youngs EG (1985b) A simple equation for predicting water-table drawdowns. J Agr Rngg Res 31:28–321

    Google Scholar 

  • Yu P, Yang T, Liu CA (2002) Regional model of low flow for Southern Taiwan. Hydrol Processes 16(10):2017–2034

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Indian Institute of Technology, Roorkee, for funding under grant no. HYD/FIG/100582 towards field visits and instrumentations. The authors also wish to thank Mr. Sumer for the field support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, V., Sen, S. (2018). Analysis of Spring Discharge in the Lesser Himalayas: A Case Study of Mathamali Spring, Aglar Watershed, Uttarakhand. In: Singh, V., Yadav, S., Yadava, R. (eds) Water Resources Management. Water Science and Technology Library, vol 78. Springer, Singapore. https://doi.org/10.1007/978-981-10-5711-3_22

Download citation

Publish with us

Policies and ethics