Skip to main content

Metagenomic Insights into Microbial Diversity and Metabolic Potential of Hot Spring Ecosystems

  • Chapter
  • First Online:
Book cover Mining of Microbial Wealth and MetaGenomics

Abstract

Hot water springs or hydrothermal springs are places where warm or hot water comes out of earth surfaces regularly or for a significant period, in a year. These ecosystems present an epitome of extreme environments and are extensively distributed all over the globe. Geographically, these ecosystems encompass unique physical and chemical characteristics. Interestingly, 16S rRNA gene analysis in combination with next-generation sequencing has provided in-depth knowledge about phylogeny and the metabolic potential of a particular environment, including the hot springs. Every hot spring is unique and dynamic in its characteristics compare to the other. Investigation of metagenome from diverse ecological habitats, using high-throughput sequencing or library construction, has led to the discovery of a number of novel biocatalysts. Metagenomic studies in recent years have achieved two major goals: first it has resulted in deep understanding about structural and functional dynamics of microbial communities, and secondly, it has led to the discovery of diverse novel bioactive molecules. This book chapter will shed light into the role of metagenome gene cloning in revealing the true and comprehensive diversity and the metabolic potential of microbes in hot spring ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alber B, Olinger M, Rieder A, Kockelkorn D, Jobst B, Hugler M, Fuchs G (2006) Malonylcoenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188:8551–8559. doi:10.1128/JB.00987-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amin F, Zusfahair (2012) Thermophilic amylase from Thermus sp. isolation and its potential application for bioethanol production. J Sci Technol 34:525–531

    Google Scholar 

  • Anderson I, Rodriguez J, Susanti D, Porat I, Reich C, Ulrich LE, Elkins JG, Mavromatis K, Lykidis A, Kim E, Thompson LS, Nolan M, Land M, Copeland A, Lapidus A, Lucas S, Detter C, Zhulin IB, Olsen GJ, Whitman W, Mukhopadhyay B, Bristow J, Kyrpides N (2008) Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. J Bacteriol 190:2957–2965. doi:10.1128/JB.01949-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auernik KS, Kelly RM (2008) Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Appl Environ Microbiol 74:7723–7732. doi:10.1128/AEM.01545-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker GC, Gaffar S, Cowan DA, Suharto AR (2001) Bacterial community analysis of Indonesian hot springs. FEMS Microbiol Lett 200:103–109. doi:10.1111/j.1574-6968.2001.tb10700.x

    Article  CAS  PubMed  Google Scholar 

  • Bhaya D, Grossman AR, Steunou AS, Khuri N, Cohan FM, Hamamura N, Melendrez MC, Bateson MM, Ward DM, Heidelberg JE (2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J 1:703–713. doi:10.1038/ismej.2007.46

    Article  CAS  PubMed  Google Scholar 

  • Bisht SS, Das NN, Tripathy NK (2011) Indian hot-water springs: a bird’s eye view. J Energy Environ Carbon Credits 1:1–15

    Google Scholar 

  • Bottone EJ, Peluso RW (2003) Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: preliminary report. J Med Microbiol 52:69–74. doi:10.1099/jmm.0.04935-0

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA, Klatt CG, Frigaard NU, Liu Z, Li T, Zhao F, Garcia Costas AM, Overmann J, Ward DM (2012) Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. Adv Photosynth Respir 33:47–102

    Article  CAS  Google Scholar 

  • Chan CS, GanChan K, LingTay Y, HengChua Y, MauGoh K (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177. doi:10.3389/fmicb.2015.00177

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deyaa M, Fotouh A, Bayoumi RA, Hassan MA (2016) Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in Leather Industry. Enzyme Res 2016:9034364. doi:10.1155/2016/9034364

    Google Scholar 

  • Dick JM, Shock EL (2013) A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring. PLoS One 8:e72395. doi:10.1371/journal.pone.007239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobretsov S, Abed RMM, Al Maskari SMS, Al Sabahi JN, Victor R (2011) Cyanobacterial mats from hot springs produce antimicrobial compounds and quorum-sensing inhibitors under natural conditions. J Appl Phycol 23:983–993. doi:10.1007/s10811-010-9627-2

    Article  CAS  Google Scholar 

  • Dodsworth JA, Hungate BA, Hedlund BP (2011) Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea. Environ Microbiol 13:2371–2386. doi:10.1111/j.1462-2920.2011.02508.x

    Article  CAS  PubMed  Google Scholar 

  • Dudhagara PR, Bhavasar S, Ghelani A, Bhatt S (2014) Isolation, characterization and investing the industrial applications of thermostable and solvent tolerant serine protease from hot spring isolated thermophilic Bacillus licheniformis U1. Int J Appl Sci Biotechnol 2:75–82. doi:10.3126/ijasbt.v2i1.9519

    Article  Google Scholar 

  • Dudhagara PR, Bhavasar S, Ghelani A (2015) Hide dehairing and laundry detergent compatibility testing of thermostable and solvents tolerant alkaline protease from hot spring isolate bacillus cohniiU3. OnLine J Biol Sci 15:152–161. doi:10.3844/ojbsci.2015.152.161

    Article  Google Scholar 

  • Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10:228–237. doi:10.1111/j.1462-2920.2007.01447.x

    CAS  PubMed  Google Scholar 

  • Felske A, Wolterink A, Lis RV, de Vos WM, Akkermans ADL (1999) Searching for the predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol Ecol 30:137–145. doi:10.1111/j.1574-6941.1999.tb00642.x

    Article  CAS  PubMed  Google Scholar 

  • Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC, Discipulo MK (2000) Depositional facies and aqueous–solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.) J Sediment Res 70:565–585. doi:10.1306/2DC40929-0E47-11D7-8643000102C1865D

    Article  CAS  Google Scholar 

  • Gerbersdorf SU, Wieprecht S (2015) Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 13:68–97. doi:10.1111/gbi.12115

    Article  CAS  PubMed  Google Scholar 

  • Ghelani A, Patel R, Mangrola A, Dudhagara P (2015) Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India. Genomics Data 4:54–56. doi:10.1016/j.gdata.2015.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Bal B, Kashyap VK, Pal S (2003) Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) Hot Spring and culture of Shewanella-related thermophiles. Appl Environ Microbiol 69:4332–4336. doi:10.1128/AEM.69.7.4332-4336.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375. doi:10.1038/ncomms1373

    Article  PubMed  Google Scholar 

  • Gumerov VM, Mardanov AV, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (2011) Complete genome sequence of “Vulcanisaeta moutnovskia” strain 768-28, a novel member of the hyperthermophilic crenarchaeal genus Vulcanisaeta. J Bacteriol 193:2355–2356. doi:10.1128/JB.00237-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Govil T, Capalash N, Sharma P (2012) Characterization of a glycoside hydrolase family 1 β-galactosidase from hot spring metagenome with transglycosylation activity. Appl Biochem Biotechnol 168:1681–1693. doi:10.1007/s12010-012-9889-z

    Article  CAS  PubMed  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34. doi:10.1016/S0960-8524(03)00033-6

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249. http://biomednet.com/elecref/10745521005R0245

    Article  CAS  PubMed  Google Scholar 

  • Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L, Schauder R, Remsen CC, Mitchell R (1994) Characterization of a new thermophilic sulfate-reducing bacterium. Arch Microbial 161:62–69. doi:10.1007/BF00248894

    Article  CAS  Google Scholar 

  • Hobel CFV, Marteinsson VT, Hreggvidsson GO, Kristjansson JK (2005) Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes. Appl Environ Microbiol 71:2771–2776. doi:10.1128/AEM.71.5.2771-2776.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber H, Stetter KO (2001) Desulfurococcales. In: Garrity GM, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 179–210

    Google Scholar 

  • Huber H, Jannasch H, Rachel R, Fuchs T, Stetter KO (1997) Archaeoglobus veneficus sp. Nov., a novel facultative chemolithoautotrophic hyperthrmophilic sulphite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380. doi:10.1016/S0723-2020(97)80005-7

    Article  CAS  Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:Reviews0003. doi:10.1186/gb-2002-3-2-reviews0003

    Article  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998a) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998b) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh T, Suzuki KI, Sanchez PC, Nakase T (1999) Caldivirga maquiligenesis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49:1157–1163. doi:10.1099/00207713-49-3-1157

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Suzuki KI, Nakase T (2002) Vulcanisaeta distribute gen. nov., sp. Nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod shaped crenarchaeota isolated from hot springs in Japan. Int J Syst Evol Microbiol 52:1097–1104. doi:10.1099/ijs.0.02152-0

    CAS  PubMed  Google Scholar 

  • Jimenez DJ, Andreote FD, Chaves D, Montana JS, Forero CS, Junca H, Zambrano MM, Baena S (2012a) Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes. PLoS One 7:e52069. doi:10.1371/journal.pone.0052069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez DJ, Montaña JS, Alvarez D, Baena S (2012b) A novel cold active esterase derived from high Andean forest soil metagenome. World J Microbiol Biotechnol 28:361–370. doi:10.1007/s11274-011-0828-x

    Article  CAS  PubMed  Google Scholar 

  • Jolivet EL, Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resist ionizing radiation. Int J Syst Evol Microbiol 53:847–851. doi:10.1099/ijs.0.02503-0

    Article  CAS  PubMed  Google Scholar 

  • Klatt CG, Bryant DA, Ward DM (2007) Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats. Environ Microbiol 9:2067–2078. doi:10.1111/j.1462-2920.2007.01323.x

    Article  CAS  PubMed  Google Scholar 

  • Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N, Heidelberg JF, Grossman AR, Bhaya D, Cohan FM, Kuhl M, Byrant DA, Ward DM (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5:1262–1278. doi:10.1038/ismej.2011.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozubal MA, Dlakic M, Macur RE, Inskeep WP (2011) Terminal oxidase diversity and function in “Metallosphaera yellowstonensis”: gene expression and protein modeling suggest mechanisms of Fe (II) oxidation in the sulfolobales. Appl Environ Microbiol 77:1844–1853. doi:10.1128/AEM.01646-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozubal MA, Macur RE, Jay ZJ, Beam JP, Malfatti SA, Tringe SG, Kocar BD, Borch T, Inskeep WP (2012) Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: integration molecular surveys, geochemical processes and isolation of novel Fe-active microorganisms. Front Microbiol 3:109. doi:10.3389/fmicb.2012.00109

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee D-W, Koh Y-S, Kim K-J, Kim B-C, Choj H-J, Kim D-S, Suhartono MT, Pyun Y-R (1999) Isolation and characterisation of thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393–400. doi:10.1111/j.1574-6968.1999.tb08754.x

    Article  CAS  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi:10.1038/nature04983

    Article  CAS  PubMed  Google Scholar 

  • Leis B, Angelov A, Mientus M, Li H, Pham VTT, Lauinger B, Bongen P, Pietruszka J, Gonçalves LG, Santos H, Liebl W (2015) Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Front Microbiol 6:275. doi:10.3389/fmicb.2015.00275

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin KH, Liao BY, Chang HW, Huang SW, Chang TY, Yang CY, Wang YB, Lin YTK, Wu YW, Tang SL, Yu H-T (2015) Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics. BMC Genomics 16:1029. doi:10.1186/s12864-015-2230-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Klatt CG, Wood JM, Rusch DB, Ludwig M, Wittekindt N, Tomsho LP, Schuster SC, Ward DM, Bryant DA (2011) Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. ISME J 5:1279–1290. doi:10.1038/ismej.2011.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Zhang N, Zhao C, Lin B, Xie L, Huang Y (2012) Characterization of a recombinant thermostable xylanase from hot spring thermophilic Geobacillus sp. TC-W7. J Microbiol Biotechnol 22:1388–1394. doi:10.4014/jmb.1203.03045

    Article  CAS  PubMed  Google Scholar 

  • López-López O, Knapik K, Cerdán ME, González-Siso MI (2015) Metagenomics of an Alkaline Hot Spring in Galicia (Spain): microbial diversity analysis and screening for novel lipolytic enzymes. Front Microbiol 6:1291. doi:10.3389/fmicb.2015.01291

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processed: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577

    Article  CAS  PubMed  Google Scholar 

  • Mamo G, Gessese A (1999) A highly thermostable amylase from a newly isolated thermophilic Bacillus sp. WN11. J Appl Microbiol 86:557–560. doi:10.1046/j.1365-2672.1999.00685.x

    Article  CAS  Google Scholar 

  • Mangrola AV, Dudhagara P, Koringa P, Joshi CG, Patel RK (2015) Shotgun metagenomic sequencing based microbial diversity assessment of Lasundra hot spring, India. Genomics Data 4:73–75. doi:10.1016/j.gdata.2015.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Mardanov AV, Gumerov VM, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (2011) Complete genome sequence of the thermoacidophilic crenarchaeon Thermoproteus uzoniensis 768-20. J Bacteriol 193:3156–3157. doi:10.1128/JB.00409-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marteinsson VT, Hauksdottir S, Hobel CF, Kristmannsdottir H, Hreggvidsson GO, Kristjansson JK (2001) Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67:4242–4248. doi:10.1128/AEM.67.9.4242-4248.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miroshnichenko ML, Rainey FA, Rhode M, Bonch-Osmolovskaya EA (1999) Hippeamaritima gen. nov., sp. nov., a new genus of thermophilic, sulfur-reducing bacterium from submarine hotvents. Int J Syst Bacteriol 49:1033–1038. doi:10.1099/00207713-49-3-1033

    Article  CAS  PubMed  Google Scholar 

  • Mollania N, Khajeh K, Hosseinkhani S, Dabirmanesh B (2009) Purification and characterization of a thermostable phytate resistant alpha-amylase from Geobacillus sp. LH8. Int J Biol Macromol 46:27–36. doi:10.1016/j.ijbiomac.2009.10.010

    Article  PubMed  Google Scholar 

  • Mori K, Kim H, Kakegawa T, Hanada S (2003) A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceaefam. Nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283–290. doi:10.1007/s00792-003-0320-0

    Article  CAS  PubMed  Google Scholar 

  • Moussard HL, Haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Reysenbach AL, Jeanthon C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233. doi:10.1099/ijs.0.02669-0

    Article  CAS  PubMed  Google Scholar 

  • Neelakanta G, Sultana H (2013) The use of metagenomic approaches to analyze changes in microbial communities. Microbiol Insights 6:37–48. doi:10.4137/MBI.S10819

    PubMed  PubMed Central  Google Scholar 

  • Ozdemir S, Okumus V, Ulutas MS, Dundar A, Akarsubası AT, Dumonted S (2015) Isolation of a novel thermophilic anoxybacillus flavithermus so-13, production, characterization and industrial applications of its thermostable α-amylase. Bioprocess Biotech 5:7. doi:10.4172/2155-9821.1000237

    Google Scholar 

  • Pagaling E, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2012) Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 16:607–618. doi:10.1007/s00792-012-0460-1

    Article  PubMed  Google Scholar 

  • Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PN, Lettinga G, Stams AJ (2005) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159–2165. doi:10.1099/ijs.0.63780-0

    Article  CAS  PubMed  Google Scholar 

  • Purkhold U, Ser AP, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382. doi:10.1128/AEM.66.12.5368-5382.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, Schleper C (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol 64:167–174. doi:10.1111/j.1574-6941.2008.00466.x

    Article  CAS  PubMed  Google Scholar 

  • Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71:817–825. doi:10.1128/AEM.71.2.817-825.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi Y, Muramatsu M, Imachu H, Narihiro T, Ohashi A, Harada H, Hanada S, Kamagata Y (2008) Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. Int J Syst Evol Microbiol 58:2541–2548. doi:10.1099/ijs.0.2008/000893-0

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Ranjan R, Kapardar RK, Grover A (2005) Unculturable bacterial diversity: an untapped resource. Curr Sci 89:72–77

    CAS  Google Scholar 

  • Sharma PK, Singh K, Singh R, Capalash N, Ali A, Mohammad O, Kaur J (2011) Characterization of a thermostable lipase showing loss of secondary structure at ambient temperature. Mol Biol Rep 39:2795–2804. doi:10.1007/s11033-011-1038-1

    Article  PubMed  Google Scholar 

  • Sharma PK, Kumar R, Kumar R, Mohammad O, Singh R, Kaur J (2012) Engineering of a metagenome derived lipase toward thermal tolerance: effect of asparagine to lysine mutation on the protein surface. Gene 491:264–271. doi:10.1016/j.gene.2011.09.028

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Pang L, Chen S, Chen I (1995) Purification and properties of an extracellular a-amylase from Thermus sp. Bot Bull Acad Sci 36:195–200

    CAS  Google Scholar 

  • Siebers B, Zaparty M, Raddatz G, Tjaden B, Albers SV, Bell SD, Blombach F, Kletzin A, Kyrpides N, Lanz C, Plagens A, Rampp M, Rosinus A, Jan MV, Makaroya KS, Klenk HP, Schuster SC, Hensel R (2011) The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS One 6:e24222. doi:10.1371/journal.pone.0024222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526. doi:10.1128/AEM.00946-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjörleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song ZQ, Chen JQ, Jiang HC, Zhou EM, Tang SK, Zhi XY, Zhang LX, Zhang CL, Li WJ (2010) Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles 14:287–296. doi:10.1007/s00792-010-0307-6

    Article  PubMed  Google Scholar 

  • Steele HE, Jaeger JE, Daniel R, Streit WR (2009) Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol 16:25–37. http://dx.doi.org/10.1159/000142892

    Article  CAS  PubMed  Google Scholar 

  • Steunou AS, Bhaya D, Bateson MM, Melendrez MC, Ward DM, Brecht E et al (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci U S A 103:2398–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swingley WD, Meyer-Dombard DR, Shock EL, Alsop EB, Falenski HD, Havig JR, Raymond J (2012) Coordinating environmental genomics and geochemistry reveals metabolic transitions in a Hot Spring Ecosystem. PLoS One 7:E38108. doi:10.1371/journal.pone.0038108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang K, Utairungsee T, Kanokratana P, Sriprang R, Champreda V, Eurwilaichitr L, Tanapongpipat S (2006) Characterization of a novel cyclomaltodextrinase expressed from environmental DNAisolated from Bor Khleung hot spring in Thailand. FEMS Microbiol Lett 260:91–99. doi:10.1111/j.1574-6968.2006.00308.x

    Article  PubMed  Google Scholar 

  • Tang K, Kobayashi RS, Champreda V, Eurwilaichitr L, Tanapongpipat S (2008) Isolation and characterization of a novel thermostable neopullulanase-like enzyme from a Hot Spring in Thailand. Biosci Biotechnol Biochem 72:1448–1456. doi:10.1271/bbb.70754

    Article  CAS  PubMed  Google Scholar 

  • Tekere M, Prinsloo A, Olivier J, Jonker N, Venter S (2012) An evaluation of the bacterial diversity at Tshipise, Mphephu and Sagole hot water springs, Limpopo Province, South Africa. Afr J Microbiol Res 6:4993–5004. doi:10.5897/AJMR12.250

    CAS  Google Scholar 

  • Tekere M, Lötter A, Olivier J, Venter S (2015) Bacterial diversity in some South African Thermal Springs: a metagenomic analysis. In: Proceedings world geothermal congress 2015, Melbourne, Australia, pp 19–25

    Google Scholar 

  • Teufel R, Kung JW, Kockelkorn D, Alber BE, Fuchs G (2009) 3-Hydroxypropionylcoenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales. J Bacteriol 191:4572–4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevenieau F, Fardeau ML, Ollivier B, Joulian C, Baena S (2007) Desulfomicrobium thermophilum sp. nov., a novel thermophilic sulphate-reducing bacterium isolated from a terrestrial hot spring in Colombia. Extremophiles 11:295–303. doi:10.1007/s00792-006-0039-9

    Article  CAS  PubMed  Google Scholar 

  • Tirawongsaroj PR, Sriprang P, Harnpicharnchai T, Thongaram V, Champreda S, Tanapongpipat K, Pootanakit L, Eurwilaichitr L (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133:42–49. doi:10.1016/j.jbiotec.2007.08.046

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkianiamobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250

    Google Scholar 

  • Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP (2010) Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8:140–154. doi:10.1111/j.1472-4669.2009.00228.x

    Article  CAS  PubMed  Google Scholar 

  • Visser M, Worm P, Muyzer G, Pereira IA, Schaap PJ, Plugge CM, Kuever J, Parshina SN, Nazina TN, Ivanova AE, Bernier-Latmani R, Goodwin LA, Kyrpides NC, Woyke T, Chain P, Davenport KW, Spring S, Klenk HP, Stams AJ (2013) Genome analysis of Desulfotomaculum kuznetsovii strain 17T reveals a physiological similarity with Pelotomaculum thermopropionicum SI(T). Stan Genomic Sci 8:69–87. doi:10.4056/sigs.3627141

    Article  CAS  Google Scholar 

  • Volk R (2006) Antialgal activity of several cyanobacterial exometabolites. J Appl Phycol 18:145–151. doi:10.1007/s10811-006-9085-z

    Article  CAS  Google Scholar 

  • Volk R, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186. doi:10.1016/j.micres.2005.08.005

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang C, Song Z, Zhang Y, Ren H, Zhang J, Zhang L (2013) Control of temperature on microbial community structure in Hot Springs of the Tibetan. PLoS One 8:e62901. doi:10.1371/journal.pone.0062901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka Peninsula. Hindawi Publishing Corporation. Archaea Article ID 136714, 13p. doi:10.1155/2013/136714

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • William PI, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings RD, Fouke BW, Reysenbach AL, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:39773. doi:10.1371/journal.pone.0009773

    Google Scholar 

  • William PI, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB, YNP Metagenome Project Steering Committee, Working Group Members (2013) The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol 4:67. doi:10.3389/fmicb.2013.00067

    Google Scholar 

  • Williams PG (2009) Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends Biotechnol 27:45–52. doi:10.1016/j.tibtech.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Wang F, Guo L, Chen Z, Sievert SM, Meng J, Huang G, Li Y, Yan Q, Wu S, Wang X, Chen S, He G, Xiao X, Xu A (2011) Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. ISME J 5:414–426. doi:10.1038/ismej.2010.144

    Article  PubMed  Google Scholar 

  • You XY, Guo X, Zheng HJ, Zhang MJ, Liu LJ, Zhu YQ, Zhu B, Wang SY, Zhao GP, Poetsch A, Jiang CY, Liu SJ (2011) Unraveling the Acidithiobacillus caldus complete genome and its central metabolisms for carbon assimilation. J Genet Genomics 38:243–252. doi:10.1016/J.JGG.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  • Zarafeta D, Kissas D, Sayer C, Gudbergsdottir SR, Ladoukakis E, Isupov MN, Chatziioannou A, Peng X, Littlechild JA, Skretas G, Kolisis FN (2016) Discovery and characterization of a thermostable and highly halotolerant GH5 cellulase from an Icelandic Hot Spring isolate. PLoS One 11:e0146454. doi:10.1371/journal.pone.0146454

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeikus JG, Dawson MA, Thompson TE, Ingvorsen K, Hatchikian EC (1983) Microbial ecology of volcanic sulphidogenesis: ISOLATION AND CHARACTERization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169. doi:10.1099/00221287-129-4-1159

    CAS  Google Scholar 

Download references

Acknowledgement

Financial assistance to Dr. P.K.S. by the Science and Engineering Research Board (SERB) New Delhi, with project file number: SB/YS/LS-63/2013, under fast track scheme for the young scientists, is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpender Kumar Sharma Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Saini, J., Kaur, R., Sharma, P.K. (2017). Metagenomic Insights into Microbial Diversity and Metabolic Potential of Hot Spring Ecosystems. In: Kalia, V., Shouche, Y., Purohit, H., Rahi, P. (eds) Mining of Microbial Wealth and MetaGenomics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5708-3_9

Download citation

Publish with us

Policies and ethics