Skip to main content

Rhizosphere Microbiome and Its Role in Plant Growth Promotion

  • Chapter
  • First Online:
Mining of Microbial Wealth and MetaGenomics

Abstract

Microbial communities play a vital role in the growth and development of plants by influencing their physiological processes. The role of rhizodeposits to shape the rhizobacterial community structure is well established. Plant roots release various organic chemicals that attract and choose specific kind of microbes within the rhizosphere. In response, the plants associated with microbes enhance plant growth and productivity via different mechanisms. Therefore, in order to develop sustainable farming approaches such as biofertilizers and biopesticides, the study of host plants and associated microbial interactions in the rhizosphere plays an important role. Although plant growth-promoting microbial communities are abundant in the rhizosphere, many plant pathogens are also present that break through the plant defense mechanisms and cause various diseases. Therefore, to promote growth and productivity of crop plants, it is central to know what types of microorganisms are present and what functions they are performing in the rhizosphere. In this chapter, we have discussed the chief components of rhizosphere microbiome and its role in plant growth and management of various phytopathoens. The rhizospheric plant-microbe interactions and function of rhizosphere microbiome in agriculture have been described. Finally, we have drawn attention to various approaches to manipulate and redirect the microbial population in rhizosphere to enhance plant growth and crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali SS, Vidhale NN (2013) Bacterial siderophore and their application: a review. Int J Curr Microbiol App Sci 2:303–312

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asiegbu FO, Nahalkova J, Li G (2005) Pathogen-inducible cDNAs from the interaction of the root rot fungus Heterobasidion annosum with Scots pine (Pinus sylvestris L.) Plant Sci 168:365–372. doi:10.1016/j.plantsci.2004.08.010

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681. doi:10.1111/j.1365-3040.2009.01926.x

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017. doi:10.1104/pp.109.147462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bakker M, Manter D, Sheflin A, Weir T, Vivanco J (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13. doi:10.1007/s11104-012-1361-x

    Article  CAS  Google Scholar 

  • Baldani VLD, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazatrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil is influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Barazani O, Friedman J (2001) Allelopathic bacteria and their impact on higher plants. Crit Rev Microbiol 27:41–55. doi:10.1080/20014091096693

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Aguilar CA (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants. 2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G, Rybakova D, Grube M, Koberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot. doi:10.1093/jxb/erv466

  • Berry AE, Chiocchini C, Selby T, Sosio M, Wellington EM (2003) Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol Lett 223:15–20

    Article  CAS  PubMed  Google Scholar 

  • Bertrand H, Poly F, Van VT, Lombard N, Nalin R, Vogel TM (2005) High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J Microbiol Methods 62:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM (1997) Molecular phylogeny of Archaea from soil. PNAS 94:277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350. doi:10.1016/S1369-5266(00)00183-7

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugarcane and other grasses. Aust J Plant Physiol 28:889–895

    Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    Article  CAS  Google Scholar 

  • Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from Eastern Amazonia: evidence for unusual microorganism and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bottiglieri M, Keel C (2006) Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 72:418–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brimecombe MJ, De Lelj FA, Lynch JM (2001) The rhizosphere–the effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 95–140

    Google Scholar 

  • Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731. doi:10.1371/journal.pone. 0055731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41. doi:10.1016/j.apsoil.2005.12.002

    Article  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A 92:4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468. doi:10.1074/jbc.M106655200

    Article  CAS  PubMed  Google Scholar 

  • De Boer W, de Ridder-Duine AS, Klein Gunnewiek PJA, Smant W, van Veen JA (2008) Rhizosphere bacteria from sites with higher fungal densities exhibit greater levels of potential antifungal properties. Soil Biol Biochem 40:1542–1544

    Article  CAS  Google Scholar 

  • Defago G, Berling CH, Burger V, Hass D, Hhar G, Keel C, Voisard C, Wirthner P, Wuthrich B (1990) Suppression of black rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Hormby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wellingford, pp 93–108

    Google Scholar 

  • Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Wang LH, Xu JL et al (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactones. Nature 411:813–817

    Article  CAS  PubMed  Google Scholar 

  • Egamberdiyeva D, Kamiliva F, Validov S, Gafurova L, Kucharova Z, Lugentenberg B (2008) High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown in salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrition in biocontrol of Pythium-damping-off by bacteria. Phytopathology 77:190–195

    Article  Google Scholar 

  • Emmert EA, Klimowicz AK, Thomas MG, Handelsman J (2004) Genetics of zwittermicin A production by Bacillus cereus. Appl Environ Microbiol 70:104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng K, Lu HM, Sheng HJ, Wang XL, Mao J (2004) Effect of organic ligands on biological availability of inorganic phosphorus in soils. Pedosphere 14:85–92

    CAS  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834. doi:10.1094/MPMI.2003.16.9.827

    Article  CAS  PubMed  Google Scholar 

  • Gevaudant F, Duby G, von Stedingk E, Zhao R, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiol 144:1763–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Ghosh P, Maiti TK (2011) Production and metabolism of indole acetic acid (IAA) by root nodule bacteria (Rhizobium): a review. J Pure Appl Microbiol 5:523–540

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. doi:10.6064/2012/963401

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, UK, pp 111–118

    Book  Google Scholar 

  • Goldstein AH, Rogers RD, Mead G (1993) Separating phosphate from ores via bioprocessing. Biotechnology 11:1250–1254

    CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Halder AK, Chakrabartty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berucksichtigung der grundungung und brache. Arbeiten der Deutschen Landwirtschafts Gesellschaft 98:59–78

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry, and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil in fumigation with chloroform. Soil Biol Biochem 8:167–177

    Article  CAS  Google Scholar 

  • Joergensen RG (2000) Ergosterol and microbial biomass in the rhizosphere of grassland soils. Soil Biol Biochem 32:647–652

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480. doi:10.1111/j.1469-8137.2004.01130.x

    Article  CAS  Google Scholar 

  • Jorquera MA, Hernández MT, Rengel Z, Marschner P, Luz Mora M (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034. doi:10.1007/s00374-008-0288-0

    Article  CAS  Google Scholar 

  • Karlsson AE, Johansson T, Bengtson P (2012) Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 80:305–311

    Article  CAS  PubMed  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    Article  CAS  PubMed  Google Scholar 

  • Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI (1992) Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acid Res 20:1083–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim P, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microb Biotechnol 20:138–145

    CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 14:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, de Bruijn FJ, Malik KA (1997) Introduction: assessing opportunities for nitrogen fixation in rice-a frontier project. Plant Soil 124:1–10

    Article  Google Scholar 

  • Lavania M, Nautiyal C (2013) Solubilization of tricalcium phosphate by temperature and salt tolerant Serratia marcescens NBRI1213 isolated from alkaline soils. Afr J Microbiol Res 7:4403–4413. doi:10.5897/AJMR2013.5773

    Google Scholar 

  • Lee MH, Lee SW (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genomics Inform 11:114–120. doi:10.5808/GI.2013.11.3.114

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JY, Xu RK, Xiao SC, Ji GL (2005) Effect of low-molecular-weight organic anions on exchangeable aluminum capacity of variable charge soils. J Colloid Interface Sci 284:393–399

    Article  CAS  PubMed  Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka) P. Int J Syst Evol Microbiol 54:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Lorenc-Kukula K, Jafra S, Oszmianski J, Szopa J (2005) Ectopic expression of anthocyanin 5-O-glucosyltransferase in potato tuber causes increased resistance to bacteria. J Agric Food Chem 53:272–281

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM (1990) Soil biotechnology: beneficial interactions between microorganisms and roots. Biotechnol Adv. Blackwell, Oxford, pp 335–346

    Google Scholar 

  • Madhav K, Verma S, Tanta R (2011) Isolation of amylase producing Bacillus species, from soil sample of different regions in Dehradun and to check the effect of pH and temperature on their amylase activity. J Pharm Biomed Sci 12:1–8

    Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interaction between microorganisms and plants govern iron and phosphorus acquisition along the root axis model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Matilla MA, Ramos JL, Bakker PAHM, Doornbos R, Badri DV, Vivanco JM, Ramos-Gonzalez MI (2010) Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environ Microbiol Rep 2:381–388. doi:10.1111/j.1758-2229.2009.00091.x

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Walia A, Kakkar N, Shirkot CK (2014) Tricalcium phosphate solubilization by new endophyte Bacillus methylotrophicus CKAM isolated from apple root endosphere and its plant growth-promoting activities. Acta Physiol Plant. doi:10.1007/s1173801415811

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijit M, de Bruijin I, Dekker E, der Voort V, Schneider M (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Moreno AL, Castillo ID, Parra R, Doukkali B, Redondo-Gómez S, Pérez-Palacios P, Caviedes M, Pajuelo E, Rodríguez-Llorente ID (2014) Prospecting metal-resistant plant-growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora. Environ Sci Pollut Res 21:3713–3721

    Article  CAS  Google Scholar 

  • Morris CE, Kinkel LL (2002) Fifty years of phyllosphere microbiology: significant contribution to research in related fields. In: SE L, Hicht-Poinar EI, Elliott V (eds) Phyllosphere microbiology. APS Press, St. Paul, pp 365–375

    Google Scholar 

  • Morris PF, Bone E, Tyler BM (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117:1171–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrkovacki N, Milic V (2001) Use of Azotobacter chroococcum as potentially useful in agricultural application. Ann Microbiol 51:145–158

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nehl DB, Allen SJ, Brown JF (1997) Deleterious rhizosphere bacteria: as integrating perspective. Appl Soil Ecol 5:1–20

    Article  Google Scholar 

  • Nelson TH, Sorensen D, Tobiasen C, Anderson JB, Christophersen C, Givskov M, Sorensen J (2002) Antibiotic and lipopeptides produced by fluorescent Pseudomonas sp. from sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3424

    Article  CAS  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Bolan N, Megharaj M, Naidu R (2011) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829–836

    Article  CAS  PubMed  Google Scholar 

  • Paul EA, Clark FE (1988) Soil microbiology and biochemistry. Academic, San Diego

    Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth promoting bacteria. Can J Microbiol 47:368–372

    Article  CAS  PubMed  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning and heterologus expression of phenazine biosynthetic locus from Pseudomonas aureofaciens. Mol Plant Microbe Interact 5:330–339

    Article  CAS  PubMed  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York

    Google Scholar 

  • Prasad R, De Datta SK (1978) Increasing fertilizer nitrogen efficiency In: Nitrogen and rice symposium, Los Banos, Sept 1978

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Radjacommare R, Kandan A, Nanda KR, Samiyappan R (2004) Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria treated rice plants. J Phytopathol 152:365–370

    Article  CAS  Google Scholar 

  • Rameshkumar N, Fukui Y, Sawabe T, Nair S (2008) Vibrio porteresiae sp. nov., a diazotrophic bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 58:1608–1615. doi:10.1099/ijs.0.65604-0

    Article  CAS  PubMed  Google Scholar 

  • Rameshkumar N, Sproer C, Lang E, Nair S (2010) Vibrio mangrovi sp. nov., a diazotrophic bacterium isolated from mangrove-associated wild rice (Poteresia coarctata Tateoka). FEMS Microbiol Lett 307:35–40. doi:10.1111/j.1574-6968.2010.01958.x

    Article  CAS  PubMed  Google Scholar 

  • Rameshkumar N, Gomez-Gil B, Sproer C, Lang E, Kumar ND, Krishnamurthi S, Nair RA (2011) Vibrio plantisponsor sp. nov., a diazotrophic bacterium isolated from a mangrove associated wild rice (Porteresia coarctata Tateoka). Syst Appl Microbiol 34:487–493

    Article  CAS  PubMed  Google Scholar 

  • Ramette A, Frapolli M, Défago G, Moënne-Loccoz Y (2003) Phylogeny of HCN synthase encoding hcnBC genes in biocontrol fluorescent Pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol Plant Microbe Interact 16:525–535

    Article  CAS  PubMed  Google Scholar 

  • Renker C, Blanke V, Börstler B, Heinrichs J, Buscot F (2004) Diversity of Cryptococcus and Dioszegia yeasts (Basidiomycota) inhabiting arbuscular mycorrhizal roots or spores. FEMS Yeast Res 4:597–603

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doubeand BM, Gupta VVSR (eds) Soil biota: management in sustainable farming systems. CSIRO, Victoria, pp 50–62

    Google Scholar 

  • Ridge EH (1976) Studies on soil fumigation: effects on bacteria. Soil Biol Biochem 3:249–253

    Article  Google Scholar 

  • Robert L, Tate III (1994) Soil microbiology. Wiley, New York, p 506

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. doi:10.1007/s11104-006-9056-9

    Article  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosling A, Lindahl BD, Taylor AFS, Finlay RD (2004) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37. doi:10.1016/S0168-6496(03)00222-8

    Article  CAS  PubMed  Google Scholar 

  • Rovira A (1965) Interactions between plant roots and soil microorganisms. Annu Rev Microbiol 19:241–266

    Article  CAS  PubMed  Google Scholar 

  • Rovira AD (1976) Studies on soil fumigation: effects on ammonium, nitrate and phosphate in soil and on the growth, nutrition and yield of wheat. Soil Biol Biochem 8:241–247

    Article  CAS  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556. doi:10.1104/pp.108.127613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid M, Hameed S, Imran A, Ali S, van Elsas JD (2012) Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World J Microbiol Biotechnol 28:2749–2758

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Walia A, Chauhan A, Shirkot CK (2015) Multi-trait plant growth promoting bacteria from tomato rhizosphere and evaluation of their potential as bioinoculant. Appl Biol Res 17:1–12

    Article  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elzas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18 S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci U S A 96:4786–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: Van Elsas JB, Trevors JT, Wellington MH (eds.). Modern Soil Microbiology. Marcel Dekker pp 21–45

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spaink HP, Kondorosi A, Hooykaas PJJ (1998) The Rhizobiaeceae. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506. doi:10.1016/S0168-6445(00)00036-X

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306

    Google Scholar 

  • Talboys PJ, Owen DW, Healey JR, Withers PJA, Jones DL (2014) Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol 14(51):2–9

    Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648. doi:10.1094/MPMI.2000.13.6.637

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146. doi:10.1104/pp.103.029918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe interaction, vol 1. Chapman & Hall, New York, pp 187–235

    Chapter  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournas VH, Katsoudas E (2005) Mould and yeast flora in fresh berries, grapes and citrus fruits. Int J Food Microbiol 105:11–17. doi:10.1016/j.ijfoodmicro.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  • Treonis AM, Ostleb NJ, Stotth AW, Primrosea R, Graystona SJ, Ineson P (2004) Identification of groups of metabolically active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537

    Article  CAS  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome-a review. Genome Biol 14:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ullah I, Khan AR, Jung BK, Khan AL, Lee IJ, Shin JH (2014) Gibberellins synthesized by the entomopathogenic bacterium, Photorhabdus temperata M1021 as one of the factors of rice plant growth promotion. Plant Micro Interact 9:775–782

    Article  CAS  Google Scholar 

  • Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour Technol 97:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Velazhahan R, Samiyappan R, Vidhasekaran P (1999) Relationship between antagonistic activities of Pseudomonas fuorescens isolates against Rhizoctonia solani and their production of lytic enzymes. J Plant Dis Protect 106:244–250

    CAS  Google Scholar 

  • Viebahn M, Veenman C, Wernars K, van Loon LC, Smit E, Bakker PAHM (2005) Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiol Ecol 53:245–253

    Article  CAS  PubMed  Google Scholar 

  • Von der Weid IA, Paiva E, Nobrega A, Van Elsas JD, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381

    Article  PubMed  Google Scholar 

  • Vujanovic V, Hamelin RC, Bernier L, Vujanovic G, St-Arnaud M (2007) Fungal diversity, dominance, and community structure in the rhizosphere of clonal Picea marina plants throughout nursery production chronosequences. Microbiol Ecol 54:672–684

    Article  CAS  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 22:174

    Article  CAS  Google Scholar 

  • Walia A, Mehta P, Chauhan A, Shirkot CK (2014) Effect of Bacillus subtilis strain CKT1 as inoculum on growth of tomato seedlings under net house conditions. Proc Natl Acad Sci India Sect B Biol Sci 84:145–155

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51. doi:10.1104/pp.102.019661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegener CB (2001) Transgenic potatoes expressing an Erwinia pectate lyase gene-results of a 4-year field experiment. Potato Res 44:401–410

    Article  CAS  Google Scholar 

  • Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) Phylochip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    Article  CAS  PubMed  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193. doi:10.1080/07352680490433295

    Article  CAS  Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    Article  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Yang J, Dou Y et al (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 105:7564–7569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Hamel C, Gan Y, Vujanovic V (2012) Pyrosequencing reveals how pulses influence rhizobacterial communities with feedback on wheat growth in the semiarid Prairie. Plant Soil 367:493–505

    Article  CAS  Google Scholar 

  • Zachow C, Tilcher R, Berg G (2008) Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microb Ecol 55:119–129

    Article  PubMed  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ 101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wu F (2012) p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen. PloS One 7:e48288. doi:10.1371/journal.pone.0048288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sharma, R., Minakshi, Chauhan, A. (2017). Rhizosphere Microbiome and Its Role in Plant Growth Promotion. In: Kalia, V., Shouche, Y., Purohit, H., Rahi, P. (eds) Mining of Microbial Wealth and MetaGenomics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5708-3_3

Download citation

Publish with us

Policies and ethics