Skip to main content

Fractal Information Theory (FIT)-Derived Geometric Musical Language (GML) for Brain-Inspired Hypercomputing

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Abstract

We propose fractal information theory (FIT) to compute, and it uses a Fractal tape, wherein “every single cell of a Turing tape contains a Turing tape inside.” To use this tape, we introduce a geometric musical language (GML). This language has only one letter, a time cycle, a rhythm, a clock, or a unitary operator; on the circle perimeter, multiple singular bursts or “bings” (singularity represented as circles) are located. Time gap or “silence” between the “bings” is adjusted to hold the geometric parameters of structures such as square, triangle. Each time cycle is part of a phase space or a Bloch sphere; hence, information is now a “Bloch sphere with a clocking geometry.” Several such spheres self-assemble and expand like a balloon to store and process complex information; “bings” are singularity glue to add clocking Bloch spheres into it; this is the basic of fractal information theory (FIT). The conversion of five sensory signals into geometric shapes and rhythms like music and vice versa is called geometric musical language (GML). New information is integrated as guest into a single ever-expanding host Bloch sphere. The distinction between questions and answers disappears and replaced by “situation,” written as geometric shapes and always paired together in a time cycle, side by side or one inside another. Just like a human brain, FIT-GML hypercomputing does not require algorithm or programming, and it uses the fractal beating, i.e., geometric nesting inside a Hilbert space. FIT reduces to quantum information theory, QIT, if the clocking geometry in the Bloch sphere and virtual poles are removed and the singularity feature of a “bing” is eliminated, which makes it a classical state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klimke, W.: The problem: genome annotation standards before the data deluge. Stand Genomic Sci. 5(1), 168–193 (2011)

    Article  Google Scholar 

  2. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). (pp. 623–656)

    Article  MathSciNet  MATH  Google Scholar 

  3. Landauer, R.: IEEE.org.: Information is Physica. In: Proceedings of Workshop on Physics and Computation Phys Comp. vol. 92, pp. 1–4 (1993) (IEEE Comp. Sci. Press, Los Alamitos, 1993)

    Google Scholar 

  4. Khinchin, A.I.: Mathematical foundations of information theory. Dover, New York (1957). ISBN 0-486-60434-9

    Google Scholar 

  5. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2000). ISBN 0-521-63235-8

    Google Scholar 

  7. Brukner, C., Zeilinger, A.: Information and fundamental elements of the structure of quantum theory. In: Castell, L., Ischebeck, O. (eds.) Time, Quantum, Information. Springer, Berlin (2003)

    Google Scholar 

  8. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work, and Think, 1st edn., 256 p. Hardcover, 5 Mar 2013. Eamon Dolan/Houghton Mifflin Harcourt. ISBN 10: 0544002695; ISBN 13: 978-0544002692

    Google Scholar 

  10. Gomes, G.: The timing of conscious experience: a critical review and reinterpretation of Libet’s research. Conscious. Cognit. 7, 559–595 (1998)

    Article  Google Scholar 

  11. Bandyopadhyay, A., Acharya, A.: A 16 bit parallel processing in a molecular assembly. Proc. Natl. Acad. Sci. USA 105, 3668–3672 (2008)

    Article  Google Scholar 

  12. Bandyopadhyay, A., Pati, R., Sahu, S., Paper, F., Fujita, D.: A massively parallel computing on an organic molecular layer. Nat. Phys. 6, 369 (2010). Highlight Nat. Phys. 6, 325 (2010)

    Google Scholar 

  13. Ghosh, S., Sahu, S., Fujita, D., Bandyopadhyay, A.: Design and operation of a brain like computer: a new class of frequency-fractal computing using wireless communication in a supramolecular organic, inorganic systems. Information 5, 28–99 (2014)

    Article  Google Scholar 

  14. Chen, W., et al.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math Appl. 59(5), 1754–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)

    Book  Google Scholar 

  16. Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos: Interdiscip. J. Nonlinear Sci. 6(4), 505–513 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dan, A.L., Xue, W., Guiqin, W., Zhihong, Q.: Methodological approach for detecting burst noise in the time domain. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 3(10) (2009)

    Google Scholar 

  18. Kuramoto, Y.: Each singularity generates a signal burst” Chaos and Statistical Methods. In: Proceedings of the Sixth Kyoto Summer Institute, Kyoto, Japan, p. 273, 12–15 Sept 1983, 6 Dec 2012, Springer. ISBN 9783642695599

    Google Scholar 

  19. Mallat, S., Hwang, W.L.: Singularity signal detection and processing with wavelets. IEEE Trans. Inf. Theory 38, 617–643 (1992)

    Article  MATH  Google Scholar 

  20. Watrous, J., Aaronson, S.: Closed time like curves make quantum and classical computing equivalent. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 465, No. 2102, p. 631 (2009)

    Google Scholar 

  21. Jaynes, E.T.: Foundations of radiation theory and quantum electrodynamics. In: Barut, A. (ed.) Quantum Beats, pp. 37–43. Springer, Berlin (1980)

    Google Scholar 

  22. Abbot, L.F., Wise, M.B.: Dimension of a quantum mechanical path. Am. J. Phys. 49, 37 (1981)

    Article  MathSciNet  Google Scholar 

  23. Goldstein, R.: Incompleteness: The Proof and Paradox of Kurt Gödel. W.W. Norton & Company (2005). ISBN 0-393-05169-2

    Google Scholar 

  24. Ziegler, M.: Computational power of infinite quantum parallelism. Int. J. Theor. Phys. 44(11), 2059–2071 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hamkins, J.H., Lewis, A.: Infinite time Turing machines. J. Symb. Log. 65(2), 567–604 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ghosh, S., Fujita, D., Bandyopadhyay, A.: An organic jelly made fractal logic gate with an infinite truth table. Sci. Rep. 5, 11265 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Asian office of Aerospace R&D (AOARD) a part of United States Air Force (USAF) for the grant no FA2386-16-1-0003 (2016–2019) on electromagnetic resonance-based communication and intelligence of biomaterials. Authors acknowledge Ben Goertzel and Roger Penrose for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, L. et al. (2018). Fractal Information Theory (FIT)-Derived Geometric Musical Language (GML) for Brain-Inspired Hypercomputing. In: Pant, M., Ray, K., Sharma, T., Rawat, S., Bandyopadhyay, A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 584. Springer, Singapore. https://doi.org/10.1007/978-981-10-5699-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5699-4_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5698-7

  • Online ISBN: 978-981-10-5699-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics