Skip to main content

Frequency Fractal Behavior in the Retina Nano-Center-Fed Dipole Antenna Network of a Human Eye

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 584))

Abstract

The retina nano-antenna shows a major characteristic of the center-fed dipole antenna’s working in the visible region. The cellular assembly that might work as a network of antennas is analyzed here. The collective response of various cone cells holds the geometric features of the antenna network. The fractal arrangement of the antenna lattice holds various symmetries during electromagnetic signal processing, and each symmetry generates a peak in the resonance band. Using true biological structural data, we have identified the resonance frequency spectrum of entire nano-network of cone and rod cells in a human eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sahu, S., Ghosh, S., Fujita, D., Bandyopadhyay, A.: Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci. Rep. 4, 7303 (2014)

    Article  Google Scholar 

  2. Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A.: Multi-level memory-switching properties of a single brain microtubule. Appl. Physicslett. 102, 123701 (2013)

    Google Scholar 

  3. Sahu, S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A.: Atomic water channel controlling remarkable properties of a single brain microtubule: correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47, 141–148 (2013)

    Article  Google Scholar 

  4. de Pomerai, D.I., Daniells, C., David, H., Allan, J., Duce, I., Mutwakil, M., Thomas, D., Sewell, P., Tattersall, J., Jones, D.: Non-thermal heat-shock response to microwaves. Nature 6785, 417–418 (2000)

    Article  Google Scholar 

  5. Goodman, R., Blank, M., Lin, H., Khorkova, O., Soo, L., Weisbrot, D., Henderson, A.S.: Increased levels of hsp70 transcripts are induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem. Bioenerg. 33, 115–120 (1994)

    Article  Google Scholar 

  6. Goodman, R., Henderson, A.S.: Exposure of salivary gland cells to low frequency electromagnetic fields alters polypeptide synthesis. Proc. Nat. Acad. Sci. (US) 85, 3928–3932 (1998)

    Article  Google Scholar 

  7. O’Carroll, M.J., Henshaw, D.L.: Aggregating epidemiological evidence: comparing two seminal EMF reviews. Risk Anal. 28, 225–234 (2008)

    Article  Google Scholar 

  8. Newman, E. A.: Electrophysiology of retinal glial cells. Eye Research Institute of Retina Foundation, 20 Staniford Street, Boston, MA 02114, USA

    Google Scholar 

  9. Baylor, J.D.A., Fuortes, M.G.F., O’bryan, P.M.: Receptive fields of cones in the retina of the turtle. J. Physiol. 214, 265–294 (1971)

    Article  Google Scholar 

  10. Sekuler, R., Blake, R.: Perception, Second Edition. (1990). ISBN 0-07-056065-X McGraw-Hill

    Google Scholar 

  11. The Interaction between Light and Matter. www.springer.com/cda/content/…/cda…/9783642322600-c1.pdf

  12. Rotanowska, M., Sarna, Y.: Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem. Photobiol. 81, 1305–1330 (2005). doi:10.1562/2004-11-13-1R3-371

    Article  Google Scholar 

  13. Saari, J.C., Garwin, G.G., Van Hooser, J.P., Palczewski, K.: Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vis. Res. 38, 1325–1333 (1998)

    Article  Google Scholar 

  14. Marc, T. L.: Visual Processing by the Retina. www.weizmann.ac.il/neurobiology/labs/…/kandel_ch26_retina.pdf

  15. Kalal, J. W.: Biological Psychology, Fifth Edition. North Carolina State University (1995). ISBN 0-534-21108-9

    Google Scholar 

  16. Elliott, R.S.: Antenna Theory and Design, Revised Edition. IEEE Antenna & Propagation Society, Sponsor (2006)

    Google Scholar 

  17. Canbay, C., Unal, I.: Electromagnetic modeling of retinal photoreceptors. Prog. Electromagn. Res. PIER 83, 353–374 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

J.E. Lugo thanks the magnetophotonics material SEP-PRODEP grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, P. et al. (2018). Frequency Fractal Behavior in the Retina Nano-Center-Fed Dipole Antenna Network of a Human Eye. In: Pant, M., Ray, K., Sharma, T., Rawat, S., Bandyopadhyay, A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 584. Springer, Singapore. https://doi.org/10.1007/978-981-10-5699-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5699-4_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5698-7

  • Online ISBN: 978-981-10-5699-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics