Skip to main content

Polymer Matrix Materials

  • Chapter
  • First Online:
Composite Materials Engineering, Volume 1

Abstract

Advanced resin matrix composites are referred as a class of composites constructed by matrix resins and continuous fiber reinforcements. Advanced resin matrix composites can provide a series of extraordinary advantages including high specific strength and stiffness, designable properties, fatigue and corrosion resistance as well as special electric–magnetic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen XB (2000) Development of advanced polymer composites. J Aeronaut Mater 20(1):46–54 (in Chinese)

    Google Scholar 

  2. Chen XB (2003) Development and applications of advanced polymer matrix composites. J Aeronaut Mater 23(suppl):198–204 (in Chinese)

    Google Scholar 

  3. Chen XB, Zhang BY (2009) Application and development of advanced polymer matrix composites. Mater China 28(6):2–12 (in Chinese)

    Google Scholar 

  4. Du SY (2007) Advanced composite materials and aerospace engineering. Acta Mater Compos Sinica 24(1):1–2 (in Chinese)

    Google Scholar 

  5. Chen XB et al (1999) High performance phenolic resin. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  6. Yin RZ (1990) Phenolic resin and its application. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  7. Shanan ZM (1994) Thermosett Resin 15(3):27 (in Chinese)

    Google Scholar 

  8. Ren GG (1993) A new generation of phenolic resin and its composites. China FRP Industry Association, Beijing (in Chinese)

    Google Scholar 

  9. Jiang LX et al (1990) Heat resistant polymer. Press of University of Electronic Science and Technology of Chengdu, Chengdu (in Chinese)

    Google Scholar 

  10. Regina-Mazzuca Alba M, Fong Ark W, Jones Thomas R (1982) Novel process for the production of particulate phenolic resins. Ind Eng Chem Prod Res Dev 21:139

    Article  Google Scholar 

  11. Brode GL, Kopf PW, Chow SW (1982) Phenolic thermospheres. Chemical design and principles. Ind Eng Chem Prod Res Dev 21:142

    Google Scholar 

  12. Yang YG et al (1988) Study on reaction kinetics of suspension polymerization of phenolic resin. J Beijing Univ Chem Technol 3:33 (in Chinese)

    Google Scholar 

  13. Wang LC et al (1993) Resorcin modified phenolic resin to reduce its flame, smoke and toxicity. Polym Mater (2):49 (in Chinese)

    Google Scholar 

  14. Bian JX (1991) Development of molding technology of phenolic resin. New Chem Mater 3:21 (in Chinese)

    Google Scholar 

  15. Phenolic Resin. Insulating Material and Technology Committee (1993) (in Chinese)

    Google Scholar 

  16. Pei DF (1996) Research on synthesis and ring-opening polymerization of benzoxazine-precursor of a new phenolic resin. Dissertation for Doctor’s Degree of Sichuan University (in Chinese)

    Google Scholar 

  17. Lu ZJ (1995) Dissertation for Master’s Degree of Sichuan University (in Chinese)

    Google Scholar 

  18. Kang YJ et al (1996) New type phenolic resin and its process development. GRP/Compos Mater 2:43 (in Chinese)

    Google Scholar 

  19. Pei DF et al (1994) Synthesis and modification of high performance phenolic resin. New Chem Mater 10:12 (in Chinese)

    Google Scholar 

  20. Xiao CR et al (1997) Study on performance of composite material based on FB resin (in Chinese)

    Google Scholar 

  21. Liu XH et al (1997) Study on friction materials based on heat resistant phenolic resin containing molybdenum. Eng Plast Appl 3:30 (in Chinese)

    Google Scholar 

  22. Lu ZJ et al (1995) Study on ring opening polymerization of composites materials based on phenolic resin—preparation of laminate of MDAPF1-EGF Glass Cloth. Eng Plast Appl 2:1 (in Chinese)

    Google Scholar 

  23. Lu FC (1993) Adhesive with high heat resistance. Science Press, Beijing (in Chinese)

    Google Scholar 

  24. Jiao YS (1994) Phenolic triazine resin, Fiber Reinf Plast/Compos (1):10 (in Chinese)

    Google Scholar 

  25. Liang GZ et al (1996) The BMI modifier—ally compounds. New Chem Mater 3:27 (in Chinese)

    Google Scholar 

  26. Canfield A, Clionton RG (1992) Improved ablative materials for the ASRM Nozzle. In: AIAA/SAE/ASEE 28th join propulsion conf and exhibit, Nashville, 3057

    Google Scholar 

  27. Chen MY (1990) Application status and prospect of advanced materials used in solid rocket motor of strategic missile. Aerosp Mater & Technol 4:1 (in Chinese)

    Google Scholar 

  28. ShangHai Chemistry College Lab (1979) Synth Resin, 208 (in Chinese)

    Google Scholar 

  29. Liu TD, Wang XC, Xu XP (1989) Thermosett Resin (2):38 (in Chinese)

    Google Scholar 

  30. Zou SO (1996) New Chem Mater (3):26 (in Chinese)

    Google Scholar 

  31. Shell Chemical Co (1988) Epon HPT Curing agent 1061-M, product data

    Google Scholar 

  32. Shell Chemical Co (1988) Epon HPT Curing agent 1062-M, product data

    Google Scholar 

  33. Schultz WJ et al (1988) Polym Prepr Am Chem Soc (1):136

    Google Scholar 

  34. Yao KD, Liu G (1992) Thermosetti Resin (3):52 (in Chinese)

    Google Scholar 

  35. Sun QL (1990) Thermosett Resin (4):48 (in Chinese)

    Google Scholar 

  36. US Patent 3015648

    Google Scholar 

  37. US Patent 4707534

    Google Scholar 

  38. Lin SC, Pearce EM (1979) J Polym Sci 17.3095

    Google Scholar 

  39. US Patent 3910908

    Google Scholar 

  40. Ciba-Geigy (1984) Araldite PT810, product data

    Google Scholar 

  41. Ciba-Geigy (1987) Araldite MY 0510, product data

    Google Scholar 

  42. Ciba-Geigy (1983) Araldite MY 0510, product data

    Google Scholar 

  43. Ciba-Geigy (1987) Araldite MY 720, product data

    Google Scholar 

  44. Ciba-Geigy (1987) Araldite MY 721, product data

    Google Scholar 

  45. Ciba-Geigy (1990) Araldite MY 722, product data

    Google Scholar 

  46. Shell Chemical Co (1988) Techn Bull SC:875–888. Epon HPT Resin 1071

    Google Scholar 

  47. Shell Chemical Co (1988) Tech Bull SC:876–888.Epon HPT Resin 1072

    Google Scholar 

  48. Patel RD et al (1988) J Therm Anal 34:1283

    Article  Google Scholar 

  49. US Patent 4002599

    Google Scholar 

  50. Fornes RE et al (1991) Polym. Prepr (2):40

    Google Scholar 

  51. Pyun E (1991) Sung CSP. Macromolecules 24:855

    Article  Google Scholar 

  52. Eur. Patent 76584

    Google Scholar 

  53. Cheng P, Hang LJ (1996) Thermosett Resin (2):42 (in Chinese)

    Google Scholar 

  54. Sun YS, Yang W (1990) Thermosett Resin (3): 1 (in Chinese)

    Google Scholar 

  55. Lu HB, Fu ZL (1990) J Tsinghua Univ (5): 22 (in Chinese)

    Google Scholar 

  56. Zhong XJ (1992) Adhesives (5):11 (in Chinese)

    Google Scholar 

  57. Bucknall CB, Partridge IK (1986) Polym Eng Sci (26):54

    Google Scholar 

  58. Gilert AH, Bucknall CB (1991) Makrojol Symp 45:289

    Article  Google Scholar 

  59. Bennett GS et al (1991) Polymer 9:1633

    Article  Google Scholar 

  60. Wang HM, Yi XS (1992) Thermosett Resin (4):35 (in Chinese)

    Google Scholar 

  61. ICI Fiberite (1991) 977-2 Epoxy Resin

    Google Scholar 

  62. Ciba-Geigy Composite Materials. R6376, product data

    Google Scholar 

  63. Hercules. 8552 Epoxy Resin, product data

    Google Scholar 

  64. Li B, Tang BM (1996) 5228 research report (in Chinese)

    Google Scholar 

  65. Cheng QB (2003) J Aeron Mater (S1): (in Chinese)

    Google Scholar 

  66. Zhang FF (1995) J Mater Eng (5):3 (in Chinese)

    Google Scholar 

  67. Liang GZ, Gu YJ (1997) Bismaleimide Resin. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  68. Zhang BY, Li P, Chen XB (1998) Studies of modified BMI resin (I) the Influence of resin composition on the thermal and mechanical properties. J Mater Sci 33:5683–5687

    Article  Google Scholar 

  69. Zhang BY, Chen XB, Li M et al (2002) Discussion on the compression strength after impact of carbon fiber reinforced BMI resin matrix composite. J Aeronaut Mater 22(1):36–40 (in Chinese)

    Google Scholar 

  70. Yi XS (2006) Progress of advanced composite. National Defense Industry Press, Beijing (in Chinese)

    Google Scholar 

  71. Houben-weyl (1952) Methoden der Organischen Chemie, Vol 8/3, Thieme, Stuttgart: 89 and 125

    Google Scholar 

  72. Grigat E, Putter R (1967) Chem A. (International edition) 6(2):206

    Article  Google Scholar 

  73. Grigat E, Putter R (1963) (Farbenfabriken Bayer AG). German patent 1195764

    Google Scholar 

  74. Grigat E, Putter R (1963) (Farbenfabriken Bayer AG). German patent 1201839

    Google Scholar 

  75. Zhou ZHM (University of Leeds) (1993). WO 95/07309

    Google Scholar 

  76. Grigat E, Chem A (1972) Chem A (International edition) 11(11):949

    Article  Google Scholar 

  77. Stroh R et al (1960) Angew Chem 72:1000

    Google Scholar 

  78. Martin D et al (1964) Angew Chem 76:303

    Article  Google Scholar 

  79. Fyfe CA et al (1992) Macromolecules 25:6289

    Article  Google Scholar 

  80. Lin SC, Elim P (1994) High performance thermosets, Hanser publisher, New York, p 68

    Google Scholar 

  81. Shimp DA (1986) Polym Mater Sci Eng 58:107

    Google Scholar 

  82. Barton JM et al (1991) Polym Bull 25:475

    Article  Google Scholar 

  83. Osei-Owusu A et al (1991) Polym Eng Sci 31(22):1604

    Article  Google Scholar 

  84. Shimp DA (Celanese Corporation) (1986) U.S.P. 4, 604, 453; U.S.P. 4, 608, 434

    Google Scholar 

  85. Woo EP et al (The Dow Chemical Company) (1985) U.S.P. 4, 528, 366

    Google Scholar 

  86. Oehmke RW et al (Minnesota Mining and Manufacturing Company) (1972) U.S.P. 3, 694, 410

    Google Scholar 

  87. Osei-Owusu A et al (1992) Polym Eng Sci 32(8):535

    Article  Google Scholar 

  88. Osei-Owusu A et al (1991) Polym Mater Sci Eng 65:304

    Google Scholar 

  89. Shimp DA et al (1988) In: 33th International SAMPE symposium, March 7–10, 754

    Google Scholar 

  90. Shimp DA et al (1992) In: 33th International SAMPE symposium, March 9–12

    Google Scholar 

  91. Marie F, Grenier L et al (1995) Eur Polym J 31(11):1139

    Article  Google Scholar 

  92. Morio G (1994) Plym Mater Sci Eng 71:621

    Google Scholar 

  93. Ian H et al (1994) Polym Mater Sci Eng 71:807

    Google Scholar 

  94. Fyfe CA et al (1995) J Polym Sci A: Plym Chem 33:1991

    Google Scholar 

  95. Carig, WM Jr (INTEREZ, Inc.) (1987) E.P.0, 269,412

    Google Scholar 

  96. Bogan WW et al (1988) SAMPE J 24(6):19

    Google Scholar 

  97. Shimp DA et al (1989) In: 34th international SAMPE symposium, May 8–11, 222

    Google Scholar 

  98. Shimp DA et al (1990) In: 35th international SAMPE symposium, April 2–5, 1045

    Google Scholar 

  99. Tanigaichi M et al (1977) U.S.P. 4, 022, 755

    Google Scholar 

  100. Delano CB et al (1979) NASA-CR-159724

    Google Scholar 

  101. Sung et al (1997) 6th SPSJ Internat Polym Conf 46 (preprints)

    Google Scholar 

  102. Korshak VV et al (1980) Vysokomol Soedin Ser A 22(8):1714

    Google Scholar 

  103. Bauer M et al (1987) Acta Polymerica 38(12):658

    Article  Google Scholar 

  104. Monnerat GA et al (1989) International SAMPE Electron Conf Sec (4):132

    Google Scholar 

  105. Yang PC et al (1990) 35th International SAMPE Symposium, April 2–5, 1131

    Google Scholar 

  106. Almen G, et al (1990) 35th International SAMPE Symposium, April 2–5, 408

    Google Scholar 

  107. Bao JW et al (1998) First Asian-Australasian conference on composite materials, Oct 7–9

    Google Scholar 

  108. Yang HX, Liu JG, Chen JS et al (2006) Synthesis and properties of RMR-type polyimide composites with improved flexibility. J Aeronaut Mater 26(3):173–176

    Google Scholar 

  109. Zhao WD, Wang L, Dong B et al (2009) PMR-type polyimide matrix composites and their applications. Aerosp Mater & Technol 4:1–5

    Google Scholar 

  110. Mohamed O, Abdalla Derrick Deana et al (2002) Viscoelastic and mechanical properties of thermoset PMR-type polyimide-clay nanocomposites. Polymer 43:5887–5893

    Article  Google Scholar 

  111. Conreur C, Francillette J, Laupretre F et al (1997) Synthesis and processing of model compound of PMR-15 resin. J Polym Sci A: Polym Chem 35(1):123–136

    Article  Google Scholar 

  112. Ding YH (2011) Polymerization approach for polyimide preparation. Chem Intermed 5:36–43

    Google Scholar 

  113. Allred RE, Wesson SP, Shin EE (2003) The influence of sizings on the durability of high-temperature polymer composites. High Perform Polym 15(4):395–419

    Article  Google Scholar 

  114. Bowman CL, Suaer JK, Thesken JC (2001) Characterization of graphite fiber/polyimide composites for m applications. Int SAMPE Symp Exhib (Proceedings), 46(2):1515–1529

    Google Scholar 

  115. Ahn MK, Stringfellow TC, Bowles KJ (1993) Investigation of stable free radicals in polyimides using EPR spectroscopy. Mater Res Soc Symp Proc 305:217–227

    Article  Google Scholar 

  116. Morgan RJ, Shin EE, Lincoln J (2001) Overview of polymer matrix composites performance and materials development for aerospace applications. SAMPE J 37(2):102–107

    Google Scholar 

  117. Pater Ruth H, Curto Paul A (2007) Advanced materials for space applications. Acta Astronaut 61(11–12):1121–1129

    Article  Google Scholar 

  118. Chen JS, Zuo HJ, Fan L et al (2006) Development of high temperature polyimide. Aerosp Mater & Technol 2:7–12

    Google Scholar 

  119. Yang SY, Gao SQ, Hu AJ et al (2000) Progress in high temperature polyimide matrix resins and carbon fiber reinforced composites. Aerosp Mater & Technol 1:1–6

    Google Scholar 

  120. Chen XB, Fu Y, Shen C et al (1998) Study on LP-15 non-MDA polyimide composite. Acta Mater Compos Sinica 15(1):7–13

    Google Scholar 

  121. Tandon GP, Pochiraju KV, Schoeppner GA (2006) Modeling of oxidative development in PMR-15 resin. Polym Degrad Stab 91(8):1861–1869

    Article  Google Scholar 

  122. Tandona GP, Pochirajub KV, Schoeppnerc GA (2008) Thermo-oxidative behavior of high-temperature PMR-15 resin and composites. Mater Sci Eng, A 498:150–161

    Article  Google Scholar 

  123. Tan B, Xiaosu YI (2001) High-temperature polyimide composites and its application in aeronautical engine. J Aeronaut Mater 12(1):55–62

    Google Scholar 

  124. Hou H, Wilkinson SP, Johnston NJ et al (1996) Processing and properties of IM7/LARCTM-RP46 polyimide composites. High Perform Polym, December, 89(4):491–505

    Google Scholar 

  125. Tiwari SN, Srinivansan K (1991) Toughening of PMR composites by semi-interpenetrating networks. NASA Report, NASA-CR-189468

    Google Scholar 

  126. Johnston NJ, Srinivasan K, Pater RH (1992) Toughening of PMR composites by gradient semi-interpenetrating networks. 37th Int SAMPE Symp Exhib, 37:690–704

    Google Scholar 

  127. Delvigs P (1985) PMR polyimides from solutions containing mixed endcaps. NASA Conference Publication, 23–24

    Google Scholar 

  128. Hurwitz FI, Daniel Whittenberger J (1984) Effect of a coating on the thermo-oxidative stability of Celion 6000 Graphite Fiber/PMR-15 polyimide composite. Compos Technol Rev 5(4):109–114

    Google Scholar 

  129. Mitrovic Milan, Carman Greg P (1996) Effect of fatigue damage in woven composites on thermo-mechanical properties and residual compressive strength. J Compos Mater 30(2):164–188

    Article  Google Scholar 

  130. Delaney E, Riel F, Vuong T et al (1992) Preliminary physical, mechanical and toxicological properties of a benign version of the PMR-15 polyimide resin system. SAMPE J 28(1):31–35

    Google Scholar 

  131. Koenig JL, Shields CM (1985) Specroscopic characterization of acetylene-terminated sulfone resin. Polym Sci: Polym Phys Ed 23(5):845–859

    Google Scholar 

  132. Landis AL, Naselow AB (1985) Improved processible acetylene-terminated polyimide for composites. NASA Conference Publication

    Google Scholar 

  133. Huang WX, Wunder SL (1994) FTIR investigation of cross-linking and isomerization reactions of acetylene-terminated polyimide and polyisoimide oligomers. J Polym Sci, B: Polym Phys 32(12):2005–2017

    Article  Google Scholar 

  134. Wu LY (2005) The high performance/high temperature polymer an overview (V) polyimides oligomer terminated with reactive groups and its curing process. Thermosett Resin 20(5):41–47

    Google Scholar 

  135. Bott RH, Taylor LT, Ward TC (1986) Cure chemistry of acetylene-terminated polyimides. Am Chem Soc (Polymer Preprints, Division of Polymer Chemistry) 27(2):72–73

    Google Scholar 

  136. Mcdanels DL, Serafini TT, Dicarlo JA (1985) Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications, N86-13407

    Google Scholar 

  137. Pratt RD, Wilson AJ (1985) Fabrication process of a high temperature polymer matrix engine duct, N86-11620, 401–407

    Google Scholar 

  138. Tan B, YI XS (2001) High-temperature polyimide composites and its application in aeronautical engine. J Aeronaut Mater 12(1):57–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangbao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Chemical Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X., Bao, J., Shen, C., Zhang, B., Xu, Y., Shen, Z. (2018). Polymer Matrix Materials. In: Yi, XS., Du, S., Zhang, L. (eds) Composite Materials Engineering, Volume 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-5696-3_3

Download citation

Publish with us

Policies and ethics