Combustion Kinetics of Cyclohexane and C1–C2 Mono-alkyl Cyclohexanes

  • Zhandong WangEmail author
Part of the Springer Theses book series (Springer Theses)


Chapters  3 through  5 examined the flow reactor pyrolysis and laminar premixed flames of cyclohexane, methylcyclohexane and ethylcyclohexane; pyrolysis and flame intermediates were identified and quantified.


Ethylcyclohexane Methylcyclohexane Flame Intermediates Ring-opening Isomerization Mole Fraction Profiles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cool, T. A., Nakajima, K., Mostefaoui, T. A., Qi, F., McIlroy, A., Westmoreland, P. R., et al. (2003). Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. Journal of Chemical Physics, 119(16), 8356–8365.CrossRefGoogle Scholar
  2. 2.
    Cool, T. A., Wang, J., Nakajima, K., Taatjes, C. A., & McIlroy, A. (2005). Photoionization cross sections for reaction intermediates in hydrocarbon combustion. International Journal of Mass Spectrometry, 247(1–3), 18–27.CrossRefGoogle Scholar
  3. 3.
    Wang, J., Yang, B., Cool, T. A., Hansen, N., & Kasper, T. (2008). Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion. International Journal of Mass Spectrometry, 269(3), 210–220.CrossRefGoogle Scholar
  4. 4.
    Yang, B., Wang, J., Cool, T. A., Hansen, N., Skeen, S., & Osborn, D. L. (2012). Absolute photoionization cross-sections of some combustion intermediates. International Journal of Mass Spectrometry, 309, 118–128.CrossRefGoogle Scholar
  5. 5.
    Zhou, Z., Xie, M., Wang, Z., & Qi, F. (2009). Determination of absolute photoionization cross-sections of aromatics and aromatic derivatives. Rapid Communications in Mass Spectrometry, 23(24), 3994–4002.CrossRefGoogle Scholar
  6. 6.
    Zhou, Z., Zhang, L., Xie, M., Wang, Z., Chen, D., & Qi, F. (2010). Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes. Rapid Communications in Mass Spectrometry, 24(9), 1335–1342.CrossRefGoogle Scholar
  7. 7.
    Hansen, N., Klippenstein, S. J., Miller, J. A., Wang, J., Cool, T. A., Law, M. E., et al. (2006). Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations. The Journal of Physical Chemistry A, 110(13), 4376–4388.CrossRefGoogle Scholar
  8. 8.
    Soorkia, S., Trevitt, A. J., Selby, T. M., Osborn, D. L., Taatjes, C. A., Wilson, K. R., et al. (2010). Reaction of the C2H radical with 1-butyne (C4H6): Low-temperature kinetics and isomer-specific product detection. The Journal of Physical Chemistry A, 114(9), 3340–3354.CrossRefGoogle Scholar
  9. 9.
    Zhang, F., Wang, Z., Wang, Z., Zhang, L., Li, Y., & Qi, F. (2013). Kinetics of decomposition and isomerization of methylcyclohexane: Starting point for kinetic modeling mono-alkylated cyclohexanes. Energy & Fuels, 27(3), 1679–1687.CrossRefGoogle Scholar
  10. 10.
    Linstrom, P. J., & Mallard, W. G. (2005). NIST chemistry webbook. Gaithersburg, MD: National Institute of Standard and Technology, number 69.
  11. 11.
    Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.CrossRefGoogle Scholar
  12. 12.
    Luo, Y. R. (2007). Comprehensive handbook of chemical bond energies. Boca Raton, FL: CRC Press.Google Scholar
  13. 13.
    Wang, Z., Cheng, Z., Yuan, W., Cai, J., Zhang, L., Zhang, F., et al. (2012). An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combustion and Flame, 159(7), 2243–2253.CrossRefGoogle Scholar
  14. 14.
    Crossley, S. P., Alvarez, W. E., & Resasco, D. E. (2008). Novel micropyrolyis index (MPI) to estimate the sooting tendency of fuels. Energy & Fuels, 22(4), 2455–2464.CrossRefGoogle Scholar
  15. 15.
    Li, W., Law, M. E., Westmoreland, P. R., Kasper, T., Hansen, N., & Kohse-Höinghaus, K. (2011). Multiple benzene-formation paths in a fuel-rich cyclohexane flame. Combustion and Flame, 158(11), 2077–2089.CrossRefGoogle Scholar
  16. 16.
    Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.CrossRefGoogle Scholar
  17. 17.
    Sirjean, B., Dames, E., Sheen, D. A., You, X.-Q., Sung, C., Holley, A. T., et al. (2009). A high-temperature chemical kinetic model of n-alkane oxidation. JetSurF Version 1.0 (Sept 15).Google Scholar
  18. 18.
    Kelley, A. P., Smallbone, A. J., Zhu, D. L., & Law, C. K. (2011). Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch sensitivity. Proceedings of the Combustion Institute, 33(1), 963–970.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations