Experimental and Kinetic Modeling Study of Cyclohexane and Its Mono-alkylated Derivatives Combustion pp 183-200 | Cite as
Combustion Kinetics of Cyclohexane and C1–C2 Mono-alkyl Cyclohexanes
Chapter
First Online:
- 290 Downloads
Abstract
Chapters 3 through 5 examined the flow reactor pyrolysis and laminar premixed flames of cyclohexane, methylcyclohexane and ethylcyclohexane; pyrolysis and flame intermediates were identified and quantified.
Keywords
Ethylcyclohexane Methylcyclohexane Flame Intermediates Ring-opening Isomerization Mole Fraction Profiles
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Cool, T. A., Nakajima, K., Mostefaoui, T. A., Qi, F., McIlroy, A., Westmoreland, P. R., et al. (2003). Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. Journal of Chemical Physics, 119(16), 8356–8365.CrossRefGoogle Scholar
- 2.Cool, T. A., Wang, J., Nakajima, K., Taatjes, C. A., & McIlroy, A. (2005). Photoionization cross sections for reaction intermediates in hydrocarbon combustion. International Journal of Mass Spectrometry, 247(1–3), 18–27.CrossRefGoogle Scholar
- 3.Wang, J., Yang, B., Cool, T. A., Hansen, N., & Kasper, T. (2008). Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion. International Journal of Mass Spectrometry, 269(3), 210–220.CrossRefGoogle Scholar
- 4.Yang, B., Wang, J., Cool, T. A., Hansen, N., Skeen, S., & Osborn, D. L. (2012). Absolute photoionization cross-sections of some combustion intermediates. International Journal of Mass Spectrometry, 309, 118–128.CrossRefGoogle Scholar
- 5.Zhou, Z., Xie, M., Wang, Z., & Qi, F. (2009). Determination of absolute photoionization cross-sections of aromatics and aromatic derivatives. Rapid Communications in Mass Spectrometry, 23(24), 3994–4002.CrossRefGoogle Scholar
- 6.Zhou, Z., Zhang, L., Xie, M., Wang, Z., Chen, D., & Qi, F. (2010). Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes. Rapid Communications in Mass Spectrometry, 24(9), 1335–1342.CrossRefGoogle Scholar
- 7.Hansen, N., Klippenstein, S. J., Miller, J. A., Wang, J., Cool, T. A., Law, M. E., et al. (2006). Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations. The Journal of Physical Chemistry A, 110(13), 4376–4388.CrossRefGoogle Scholar
- 8.Soorkia, S., Trevitt, A. J., Selby, T. M., Osborn, D. L., Taatjes, C. A., Wilson, K. R., et al. (2010). Reaction of the C2H radical with 1-butyne (C4H6): Low-temperature kinetics and isomer-specific product detection. The Journal of Physical Chemistry A, 114(9), 3340–3354.CrossRefGoogle Scholar
- 9.Zhang, F., Wang, Z., Wang, Z., Zhang, L., Li, Y., & Qi, F. (2013). Kinetics of decomposition and isomerization of methylcyclohexane: Starting point for kinetic modeling mono-alkylated cyclohexanes. Energy & Fuels, 27(3), 1679–1687.CrossRefGoogle Scholar
- 10.Linstrom, P. J., & Mallard, W. G. (2005). NIST chemistry webbook. Gaithersburg, MD: National Institute of Standard and Technology, number 69. http://webbook.nist.gov/.
- 11.Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.CrossRefGoogle Scholar
- 12.Luo, Y. R. (2007). Comprehensive handbook of chemical bond energies. Boca Raton, FL: CRC Press.Google Scholar
- 13.Wang, Z., Cheng, Z., Yuan, W., Cai, J., Zhang, L., Zhang, F., et al. (2012). An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combustion and Flame, 159(7), 2243–2253.CrossRefGoogle Scholar
- 14.Crossley, S. P., Alvarez, W. E., & Resasco, D. E. (2008). Novel micropyrolyis index (MPI) to estimate the sooting tendency of fuels. Energy & Fuels, 22(4), 2455–2464.CrossRefGoogle Scholar
- 15.Li, W., Law, M. E., Westmoreland, P. R., Kasper, T., Hansen, N., & Kohse-Höinghaus, K. (2011). Multiple benzene-formation paths in a fuel-rich cyclohexane flame. Combustion and Flame, 158(11), 2077–2089.CrossRefGoogle Scholar
- 16.Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.CrossRefGoogle Scholar
- 17.Sirjean, B., Dames, E., Sheen, D. A., You, X.-Q., Sung, C., Holley, A. T., et al. (2009). A high-temperature chemical kinetic model of n-alkane oxidation. JetSurF Version 1.0 (Sept 15).Google Scholar
- 18.Kelley, A. P., Smallbone, A. J., Zhu, D. L., & Law, C. K. (2011). Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch sensitivity. Proceedings of the Combustion Institute, 33(1), 963–970.CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2018