Experimental and Kinetic Modeling Study of Cyclohexane and Its Mono-alkylated Derivatives Combustion pp 145-182 | Cite as
Experimental and Modeling Study of Ethylcyclohexane Combustion
Chapter
First Online:
- 272 Downloads
Abstract
Ethylcylohexane (C8H16) has the following properties: molar mass of 112.21 g/mol, boiling point of 405 K, melting point of 162 K, density of 0.789 g/mL, standard enthalpy of formation of −171.8 ± 1.5 kJ/mol [1], standard molar entropy of 382.67 J/mol/K [2], and ionization potential of 9.54 ± 0.10 eV.
References
- 1.Prosen, E. J., Johnson, W. H., & Rossini, F. D. (1946). Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons. Journal of Research of the National Bureau of Standards, 37, 51–56.CrossRefGoogle Scholar
- 2.Huffman, H. M., Todd, S. S., & Oliver, G. D. (1949). Low temperature thermal data on eight C8H16 alkylcyclohexanes. Journal of the American Chemical Society, 71(2), 584–592.CrossRefGoogle Scholar
- 3.Vanderover, J., & Oehlschlaeger, M. A. (2009). Ignition time measurements for methylcyclcohexane- and ethylcyclohexane-air mixtures at elevated pressures. International Journal of Chemical Kinetics, 41(2), 82–91.CrossRefGoogle Scholar
- 4.Ji, C., Dames, E., Sirjean, B., Wang, H., & Egolfopoulos, F. N. (2011). An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames. Proceedings of the Combustion Institute, 33, 971–978.CrossRefGoogle Scholar
- 5.Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.CrossRefGoogle Scholar
- 6.Husson, B., Herbinet, O., Glaude, P. A., Ahmed, S. S., & Battin-Leclerc, F. (2012). Detailed product analysis during low- and intermediate-temperature oxidation of ethylcyclohexane. Journal of Physical Chemistry A, 116(21), 5100–5111.CrossRefGoogle Scholar
- 7.Wang, H., Dames, E., Sirjean, B., Sheen, D. A., Tangko, R., Violi, A., et al. (2010). A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19, 2010. (http://melchior.usc.edu/JetSurF/JetSurF2.0).
- 8.Wang, Z., Bian, H., Wang, Y., Zhang, L., Li, Y., Zhang, F., et al. (2015). Investigation on primary decomposition of ethylcyclohexane at atmospheric pressure. Proceedings of the Combustion Institute, 35(1), 367–375.CrossRefGoogle Scholar
- 9.Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., et al. (2014). Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 161, 84–100.CrossRefGoogle Scholar
- 10.Wang, Z., Cheng, Z., Yuan, W., Cai, J., Zhang, L., Zhang, F., et al. (2012). An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combustion and Flame, 159(7), 2243–2253.CrossRefGoogle Scholar
- 11.Zhang, F., Wang, Z., Wang, Z., Zhang, L., Li, Y., & Qi, F. (2013). Kinetics of decomposition and isomerization of methylcyclohexane: Starting point for kinetic modeling mono-alkylated cyclohexanes. Energy & Fuels, 27(3), 1679–1687.CrossRefGoogle Scholar
- 12.Oehlschlaeger, M. A., Davidson, D. F., & Hanson, R. K. (2005). High-temperature ethane and propane decomposition. Proceedings of the Combustion Institute, 30(1), 1119–1127.CrossRefGoogle Scholar
- 13.Linstrom, P. J. & Mallard, W. G. (2005). NIST Chemistry Webbook. Gaithersburg, MD: National Institute of Standard and Technology, Number 69. http://webbook.nist.gov/.
- 14.Klippenstein, S. J., Harding, L. B., & Georgievskii, Y. (2007). On the formation and decomposition of C7H8. Proceedings of the Combustion Institute, 31(1), 221–229.CrossRefGoogle Scholar
- 15.Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.CrossRefGoogle Scholar
- 16.Pitz, W. J., Naik, C. V., Mhaoldúin, T. N., Westbrook, C. K., Curran, H. J., Orme, J. P., et al. (2007). Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proceedings of the Combustion Institute, 31, 267–275.CrossRefGoogle Scholar
- 17.Orme, J. P., Curran, H. J., & Simmie, J. M. (2006). Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. Journal of Physical Chemistry A, 110(1), 114–131.CrossRefGoogle Scholar
- 18.Wang, Z., Zhao, L., Wang, Y., Bian, H., Zhang, L., Zhang, F., et al. (2015). Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study. Combustion and Flame, 162(7), 2873–2892.CrossRefGoogle Scholar
- 19.Tsang, W. (1991). Chemical kinetic data base for combustion chemistry part V. propene. Journal of Physical and Chemical Reference Data, 20(2), 221–273.CrossRefGoogle Scholar
- 20.Curran, H. J. (2006). Rate constant estimation for C1 to C4 alkyl and alkoxyl radical decomposition. International Journal of Chemical Kinetics, 38(4), 250–275.CrossRefGoogle Scholar
- 21.Sirjean, B., Glaude, P. A., Ruiz-Lopèz, M. F., & Fournet, R. (2008). Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals. The Journal of Physical Chemistry A, 112(46), 11598–11610.CrossRefGoogle Scholar
- 22.Sirjean, B., Glaude, P. A., Ruiz-Lopez, M. F., & Fournet, R. (2006). Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. Journal of Physical Chemistry A, 110(46), 12693–12704.CrossRefGoogle Scholar
- 23.Li, Y., Tian, Z., Zhang, L., Yuan, T., Zhang, K., Yang, B., et al. (2009). An experimental study of the rich premixed ethylbenzene flame at low pressure. Proceedings of the Combustion Institute, 32, 647–655.CrossRefGoogle Scholar
- 24.Li, Y., Cai, J., Zhang, L., Yang, J., Wang, Z., & Qi, F. (2011). Experimental and modeling investigation on premixed ethylbenzene flames at low pressure. Proceedings of the Combustion Institute, 33(1), 617–624.CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2018