Experimental and Modeling Study of Methylcyclohexane Combustion

  • Zhandong WangEmail author
Part of the Springer Theses book series (Springer Theses)


Methylcyclohexane (C7H14) has the following properties: molar mass of 98.18 g/mol, boiling point of 373 K, melting point of 147 K, density of 0.771 g/mL, standard enthalpy of formation of −154.8 kJ/mol.


  1. 1.
    Prosen, E. J., Johnson, W. H., & Rossini, F. D. (1946). Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons. Journal of Research of the National Bureau of Standards, 37, 51–56.CrossRefGoogle Scholar
  2. 2.
    Beckett, C. W., Pitzer, K. S., & Spitzer, R. (1947). The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes. Journal of the American Chemical Society, 69(10), 2488–2495.CrossRefGoogle Scholar
  3. 3.
    Taylor, P. H., & Rubey, W. A. (1988). Evaluation of the gas-phase thermal decomposition behavior of future jet fuels. Energy & Fuels, 2(6), 723–728.CrossRefGoogle Scholar
  4. 4.
    Brown, T. C., & King, K. D. (1989). Very low-pressure pyrolysis (VLPP) of methyl- and ethynyl-cyclopentanes and cyclohexanes. International Journal of Chemical Kinetics, 21(4), 251–266.CrossRefGoogle Scholar
  5. 5.
    Zeppieri, S., Brezinsky, K., & Glassman, I. (1997). Pyrolysis studies of methylcyclohexane and oxidation studies of methylcyclohexane and methylcyclohexane/toluene blends. Combustion and Flame, 108(3), 266–286.CrossRefGoogle Scholar
  6. 6.
    Hawthorn, R. D., & Nixon, A. C. (1966). Shock tube ignition delay studies of endothermic fuels. AIAA Journal, 4(3), 513–520.CrossRefGoogle Scholar
  7. 7.
    Orme, J. P., Curran, H. J., & Simmie, J. M. (2006). Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. Journal of Physical Chemistry A, 110(1), 114–131.CrossRefGoogle Scholar
  8. 8.
    Vasu, S. S., Davidson, D. F., Hong, Z., & Hanson, R. K. (2009). Shock tube study of methylcyclohexane ignition over a wide range of pressure and temperature. Energy & Fuels, 23(1), 175–185.CrossRefGoogle Scholar
  9. 9.
    Vasu, S. S., Davidson, D. F., & Hanson, R. K. (2009). OH time-histories during oxidation of n-heptane and methylcyclohexane at high pressures and temperatures. Combustion and Flame, 156(4), 736–749.CrossRefGoogle Scholar
  10. 10.
    Vanderover, J., & Oehlschlaeger, M. A. (2009). Ignition time measurements for methylcyclohexane- and ethylcyclohexane-air mixtures at elevated pressures. International Journal of Chemical Kinetics, 41(2), 82–91.CrossRefGoogle Scholar
  11. 11.
    Sivaramakrishnan, R., & Michael, J. V. (2009). Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes. Combustion and Flame, 156(5), 1126–1134.CrossRefGoogle Scholar
  12. 12.
    Pitz, W. J., Naik, C. V., Mhaoldúin, T. N., Westbrook, C. K., Curran, H. J., Orme, J. P., et al. (2007). Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proceedings of the Combustion Institute, 31, 267–275.CrossRefGoogle Scholar
  13. 13.
    Mittal, G., & Sung, C. J. (2009). Autoignition of methylcyclohexane at elevated pressures. Combustion and Flame, 156(9), 1852–1855.CrossRefGoogle Scholar
  14. 14.
    Weber, B. W., Pitz, W. J., Mehl, M., Silke, E. J., Davis, A. C., & Sung, C.-J. (2014). Experiments and modeling of the autoignition of methylcyclohexane at high pressure. Combustion and Flame, 161, 1972–1983.CrossRefGoogle Scholar
  15. 15.
    McEnally, C. S., & Pfefferle, L. D. (2005). Fuel decomposition and hydrocarbon growth processes for substituted cyclohexanes and for alkenes in nonpremixed flames. Proceedings of the Combustion Institute, 30, 1425–1432.CrossRefGoogle Scholar
  16. 16.
    Ji, C., Dames, E., Sirjean, B., Wang, H., & Egolfopoulos, F. N. (2011). An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames. Proceedings of the Combustion Institute, 33, 971–978.CrossRefGoogle Scholar
  17. 17.
    Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.CrossRefGoogle Scholar
  18. 18.
    Skeen, S. A., Yang, B., Jasper, A. W., Pitz, W. J., & Hansen, N. (2011). Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model. Energy & Fuels, 25, 5611–5625.CrossRefGoogle Scholar
  19. 19.
    Wang, H., Dames, E., Sirjean, B., Sheen, D. A., Tangko, R., Violi, A., et al. (2010). A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures. JetSurF version 2.0. September 19, 2010 (
  20. 20.
    Gong, C., Li, Z., & Li, X. (2012). Theoretical kinetic study of thermal decomposition of cyclohexane. Energy & Fuels, 26(5), 2811–2820.CrossRefGoogle Scholar
  21. 21.
    Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.CrossRefGoogle Scholar
  22. 22.
    Sirjean, B., Glaude, P. A., Ruiz-Lopez, M. F., & Fournet, R. (2006). Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. Journal of Physical Chemistry A, 110(46), 12693–12704.CrossRefGoogle Scholar
  23. 23.
    Holbrook, K. A., Pilling, M. J., & Robertson, S. H. (1996). Unimolecular reactions (2nd ed.). Chichester: John Wiley & Sons.Google Scholar
  24. 24.
    Zhang, F., Wang, Z., Wang, Z., Zhang, L., Li, Y., & Qi, F. (2013). Kinetics of decomposition and isomerization of methylcyclohexane: Starting point for kinetic modeling mono-alkylated cyclohexanes. Energy & Fuels, 27(3), 1679–1687.CrossRefGoogle Scholar
  25. 25.
    Werner, H. J., & Knowles, P. J. (1985). A second order multiconfiguration SCF procedure with optimum convergence. Journal of Chemical Physics, 82(11), 5053–5063.CrossRefGoogle Scholar
  26. 26.
    Werner, H. J., & Knowles, P. J. (1988). An efficient internally contracted multiconfiguration-reference configuration interaction method. Journal of Chemical Physics, 89(9), 5803–5814.CrossRefGoogle Scholar
  27. 27.
    Davidson, E. R., & Silver, D. W. (1977). Size consistency in the dilute helium gas electronic structure. Chemical Physics Letters, 52(3), 403–406.CrossRefGoogle Scholar
  28. 28.
    Montgomery, J. A., Jr., Frisch, M. J., Ochterski, J. W., & Petersson, G. A. (1999). A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. Journal of Chemical Physics, 110, 2822–2827.CrossRefGoogle Scholar
  29. 29.
    Werner, H. J., Knowles, P. J., Knizia, G., Manby, F. R., Schutz, M., & Celani, P. MOLPRO, a package of ab initio programs.Google Scholar
  30. 30.
    Frisch, M. J., Trucks, G. W., Schlegel, H. B., & Scuseria, G. E. (2009). Gaussian 09, Revision B.01. Wallingford, CT: Gaussian, Inc.Google Scholar
  31. 31.
    da Silva, G., & Bozzelli, J. W. (2008). Variational analysis of the Phenyl+O2 and Phenoxy+O reactions. The Journal of Physical Chemistry A, 112(16), 3566–3575.CrossRefGoogle Scholar
  32. 32.
    Zhao, L., Ye, L., Zhang, F., & Zhang, L. (2012). Thermal decomposition of 1-pentanol and its isomers: A theoretical study. The Journal of Physical Chemistry A, 116(37), 9238–9244.CrossRefGoogle Scholar
  33. 33.
    Mokrushin, V., Bedanov, V., Tsang, W., Zachariah, M., & Knyazev, V. (2009). ChemRate, Version 1.5.8. Gaithersburg, MD: National Institute of Standard and Technology.Google Scholar
  34. 34.
    Yang, X., Jasper, A. W., Giri, B. R., Kiefer, J. H., & Tranter, R. S. (2011). A shock tube and theoretical study on the pyrolysis of 1,4-dioxane. Physical Chemistry Chemical Physics, 13(9), 3686–3700.CrossRefGoogle Scholar
  35. 35.
    Gilbert, R. G., & Smith, S. C. (1990). Theory of unimolecular and recombination reactions. Carlton, Australia: Blackwell Scientific.Google Scholar
  36. 36.
    Zhang, S., & Truong, T. N. (2001). Branching ratio and pressure dependent rate constants of multichannel unimolecular decomposition of gas-phase α-HMX: An Ab Initio dynamics study. The Journal of Physical Chemistry A, 105(11), 2427–2434.CrossRefGoogle Scholar
  37. 37.
    Montgomery, J. A., Ochterski, J. W., & Petersson, G. A. (1994). A complete basis set model chemistry. IV. An improved atomic pair natural orbital method. The Journal of Chemical Physics, 101(7), 5900–5909.CrossRefGoogle Scholar
  38. 38.
    Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., et al. (2014). Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 161, 84–100.CrossRefGoogle Scholar
  39. 39.
    Raghavachari, K., Trucks, G. W., Pople, J. A., & Head-Gordon, M. (1989). A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6), 479–483.CrossRefGoogle Scholar
  40. 40.
    Sirjean, B., Glaude, P. A., Ruiz-Lopèz, M. F., & Fournet, R. (2008). Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals. The Journal of Physical Chemistry A, 112(46), 11598–11610.CrossRefGoogle Scholar
  41. 41.
    Iwan, I., McGivern, W. S., Manion, J. A., & Tsang, W. (2007). The decomposition and isomerization of cyclohexyl and 1-hexenyl radicals. In Proceedings of 5th US Combustion Meeting, San Diego, CA, 2007, CO2.Google Scholar
  42. 42.
    CHEMKIN-PRO 15092. (2009). San Diego: Reaction Design.Google Scholar
  43. 43.
    Linstrom, P. J., & Mallard, W. G. (2005). NIST chemistry webbook. Gaithersburg, MD: National Institute of Standard and Technology, Number 69.
  44. 44.
    Russell, D., & Johnson, I. (2013). NIST computational chemistry comparison and benchmark database. NIST Standard Reference Database Number 101, Release 16a, August 2013.
  45. 45.
    Klippenstein, S. J., Harding, L. B., & Georgievskii, Y. (2007). On the formation and decomposition of C7H8. Proceedings of the Combustion Institute, 31(1), 221–229.CrossRefGoogle Scholar
  46. 46.
    Pant, K. K., & Kunzru, D. (1997). Pyrolysis of methylcyclohexane: Kinetics and modelling. Chemical Engineering Journal, 67(2), 123–129.CrossRefGoogle Scholar
  47. 47.
    Kim, J., Park, S. H., Lee, C. H., Chun, B.-H., Han, J. S., Jeong, B. H., et al. (2012). Coke formation during thermal decomposition of methylcyclohexane by alkyl substituted C5 ring hydrocarbons under supercritical conditions. Energy & Fuels, 26(8), 5121–5134.CrossRefGoogle Scholar
  48. 48.
    Knepp, A. M., Meloni, G., Jusinski, L. E., Taatjes, C. A., Cavallotti, C., & Klippenstein, S. J. (2007). Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2. Physical Chemistry Chemical Physics, 9(31), 4315–4331.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations