Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 434 Accesses

Abstract

Methylcyclohexane (C7H14) has the following properties: molar mass of 98.18 g/mol, boiling point of 373 K, melting point of 147 K, density of 0.771 g/mL, standard enthalpy of formation of −154.8 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prosen, E. J., Johnson, W. H., & Rossini, F. D. (1946). Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons. Journal of Research of the National Bureau of Standards, 37, 51–56.

    Article  Google Scholar 

  2. Beckett, C. W., Pitzer, K. S., & Spitzer, R. (1947). The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes. Journal of the American Chemical Society, 69(10), 2488–2495.

    Article  Google Scholar 

  3. Taylor, P. H., & Rubey, W. A. (1988). Evaluation of the gas-phase thermal decomposition behavior of future jet fuels. Energy & Fuels, 2(6), 723–728.

    Article  Google Scholar 

  4. Brown, T. C., & King, K. D. (1989). Very low-pressure pyrolysis (VLPP) of methyl- and ethynyl-cyclopentanes and cyclohexanes. International Journal of Chemical Kinetics, 21(4), 251–266.

    Article  Google Scholar 

  5. Zeppieri, S., Brezinsky, K., & Glassman, I. (1997). Pyrolysis studies of methylcyclohexane and oxidation studies of methylcyclohexane and methylcyclohexane/toluene blends. Combustion and Flame, 108(3), 266–286.

    Article  Google Scholar 

  6. Hawthorn, R. D., & Nixon, A. C. (1966). Shock tube ignition delay studies of endothermic fuels. AIAA Journal, 4(3), 513–520.

    Article  Google Scholar 

  7. Orme, J. P., Curran, H. J., & Simmie, J. M. (2006). Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. Journal of Physical Chemistry A, 110(1), 114–131.

    Article  Google Scholar 

  8. Vasu, S. S., Davidson, D. F., Hong, Z., & Hanson, R. K. (2009). Shock tube study of methylcyclohexane ignition over a wide range of pressure and temperature. Energy & Fuels, 23(1), 175–185.

    Article  Google Scholar 

  9. Vasu, S. S., Davidson, D. F., & Hanson, R. K. (2009). OH time-histories during oxidation of n-heptane and methylcyclohexane at high pressures and temperatures. Combustion and Flame, 156(4), 736–749.

    Article  Google Scholar 

  10. Vanderover, J., & Oehlschlaeger, M. A. (2009). Ignition time measurements for methylcyclohexane- and ethylcyclohexane-air mixtures at elevated pressures. International Journal of Chemical Kinetics, 41(2), 82–91.

    Article  Google Scholar 

  11. Sivaramakrishnan, R., & Michael, J. V. (2009). Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes. Combustion and Flame, 156(5), 1126–1134.

    Article  Google Scholar 

  12. Pitz, W. J., Naik, C. V., Mhaoldúin, T. N., Westbrook, C. K., Curran, H. J., Orme, J. P., et al. (2007). Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proceedings of the Combustion Institute, 31, 267–275.

    Article  Google Scholar 

  13. Mittal, G., & Sung, C. J. (2009). Autoignition of methylcyclohexane at elevated pressures. Combustion and Flame, 156(9), 1852–1855.

    Article  Google Scholar 

  14. Weber, B. W., Pitz, W. J., Mehl, M., Silke, E. J., Davis, A. C., & Sung, C.-J. (2014). Experiments and modeling of the autoignition of methylcyclohexane at high pressure. Combustion and Flame, 161, 1972–1983.

    Article  Google Scholar 

  15. McEnally, C. S., & Pfefferle, L. D. (2005). Fuel decomposition and hydrocarbon growth processes for substituted cyclohexanes and for alkenes in nonpremixed flames. Proceedings of the Combustion Institute, 30, 1425–1432.

    Article  Google Scholar 

  16. Ji, C., Dames, E., Sirjean, B., Wang, H., & Egolfopoulos, F. N. (2011). An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames. Proceedings of the Combustion Institute, 33, 971–978.

    Article  Google Scholar 

  17. Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.

    Article  Google Scholar 

  18. Skeen, S. A., Yang, B., Jasper, A. W., Pitz, W. J., & Hansen, N. (2011). Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model. Energy & Fuels, 25, 5611–5625.

    Article  Google Scholar 

  19. Wang, H., Dames, E., Sirjean, B., Sheen, D. A., Tangko, R., Violi, A., et al. (2010). A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures. JetSurF version 2.0. September 19, 2010 (http://melchior.usc.edu/JetSurF/JetSurF2.0).

  20. Gong, C., Li, Z., & Li, X. (2012). Theoretical kinetic study of thermal decomposition of cyclohexane. Energy & Fuels, 26(5), 2811–2820.

    Article  Google Scholar 

  21. Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.

    Article  Google Scholar 

  22. Sirjean, B., Glaude, P. A., Ruiz-Lopez, M. F., & Fournet, R. (2006). Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. Journal of Physical Chemistry A, 110(46), 12693–12704.

    Article  Google Scholar 

  23. Holbrook, K. A., Pilling, M. J., & Robertson, S. H. (1996). Unimolecular reactions (2nd ed.). Chichester: John Wiley & Sons.

    Google Scholar 

  24. Zhang, F., Wang, Z., Wang, Z., Zhang, L., Li, Y., & Qi, F. (2013). Kinetics of decomposition and isomerization of methylcyclohexane: Starting point for kinetic modeling mono-alkylated cyclohexanes. Energy & Fuels, 27(3), 1679–1687.

    Article  Google Scholar 

  25. Werner, H. J., & Knowles, P. J. (1985). A second order multiconfiguration SCF procedure with optimum convergence. Journal of Chemical Physics, 82(11), 5053–5063.

    Article  Google Scholar 

  26. Werner, H. J., & Knowles, P. J. (1988). An efficient internally contracted multiconfiguration-reference configuration interaction method. Journal of Chemical Physics, 89(9), 5803–5814.

    Article  Google Scholar 

  27. Davidson, E. R., & Silver, D. W. (1977). Size consistency in the dilute helium gas electronic structure. Chemical Physics Letters, 52(3), 403–406.

    Article  Google Scholar 

  28. Montgomery, J. A., Jr., Frisch, M. J., Ochterski, J. W., & Petersson, G. A. (1999). A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. Journal of Chemical Physics, 110, 2822–2827.

    Article  Google Scholar 

  29. Werner, H. J., Knowles, P. J., Knizia, G., Manby, F. R., Schutz, M., & Celani, P. MOLPRO, a package of ab initio programs.

    Google Scholar 

  30. Frisch, M. J., Trucks, G. W., Schlegel, H. B., & Scuseria, G. E. (2009). Gaussian 09, Revision B.01. Wallingford, CT: Gaussian, Inc.

    Google Scholar 

  31. da Silva, G., & Bozzelli, J. W. (2008). Variational analysis of the Phenyl+O2 and Phenoxy+O reactions. The Journal of Physical Chemistry A, 112(16), 3566–3575.

    Article  Google Scholar 

  32. Zhao, L., Ye, L., Zhang, F., & Zhang, L. (2012). Thermal decomposition of 1-pentanol and its isomers: A theoretical study. The Journal of Physical Chemistry A, 116(37), 9238–9244.

    Article  Google Scholar 

  33. Mokrushin, V., Bedanov, V., Tsang, W., Zachariah, M., & Knyazev, V. (2009). ChemRate, Version 1.5.8. Gaithersburg, MD: National Institute of Standard and Technology.

    Google Scholar 

  34. Yang, X., Jasper, A. W., Giri, B. R., Kiefer, J. H., & Tranter, R. S. (2011). A shock tube and theoretical study on the pyrolysis of 1,4-dioxane. Physical Chemistry Chemical Physics, 13(9), 3686–3700.

    Article  Google Scholar 

  35. Gilbert, R. G., & Smith, S. C. (1990). Theory of unimolecular and recombination reactions. Carlton, Australia: Blackwell Scientific.

    Google Scholar 

  36. Zhang, S., & Truong, T. N. (2001). Branching ratio and pressure dependent rate constants of multichannel unimolecular decomposition of gas-phase α-HMX: An Ab Initio dynamics study. The Journal of Physical Chemistry A, 105(11), 2427–2434.

    Article  Google Scholar 

  37. Montgomery, J. A., Ochterski, J. W., & Petersson, G. A. (1994). A complete basis set model chemistry. IV. An improved atomic pair natural orbital method. The Journal of Chemical Physics, 101(7), 5900–5909.

    Article  Google Scholar 

  38. Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., et al. (2014). Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 161, 84–100.

    Article  Google Scholar 

  39. Raghavachari, K., Trucks, G. W., Pople, J. A., & Head-Gordon, M. (1989). A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6), 479–483.

    Article  Google Scholar 

  40. Sirjean, B., Glaude, P. A., Ruiz-Lopèz, M. F., & Fournet, R. (2008). Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals. The Journal of Physical Chemistry A, 112(46), 11598–11610.

    Article  Google Scholar 

  41. Iwan, I., McGivern, W. S., Manion, J. A., & Tsang, W. (2007). The decomposition and isomerization of cyclohexyl and 1-hexenyl radicals. In Proceedings of 5th US Combustion Meeting, San Diego, CA, 2007, CO2.

    Google Scholar 

  42. CHEMKIN-PRO 15092. (2009). San Diego: Reaction Design.

    Google Scholar 

  43. Linstrom, P. J., & Mallard, W. G. (2005). NIST chemistry webbook. Gaithersburg, MD: National Institute of Standard and Technology, Number 69. http://webbook.nist.gov/.

  44. Russell, D., & Johnson, I. (2013). NIST computational chemistry comparison and benchmark database. NIST Standard Reference Database Number 101, Release 16a, August 2013. http://cccbdb.nist.gov/.

  45. Klippenstein, S. J., Harding, L. B., & Georgievskii, Y. (2007). On the formation and decomposition of C7H8. Proceedings of the Combustion Institute, 31(1), 221–229.

    Article  Google Scholar 

  46. Pant, K. K., & Kunzru, D. (1997). Pyrolysis of methylcyclohexane: Kinetics and modelling. Chemical Engineering Journal, 67(2), 123–129.

    Article  Google Scholar 

  47. Kim, J., Park, S. H., Lee, C. H., Chun, B.-H., Han, J. S., Jeong, B. H., et al. (2012). Coke formation during thermal decomposition of methylcyclohexane by alkyl substituted C5 ring hydrocarbons under supercritical conditions. Energy & Fuels, 26(8), 5121–5134.

    Article  Google Scholar 

  48. Knepp, A. M., Meloni, G., Jusinski, L. E., Taatjes, C. A., Cavallotti, C., & Klippenstein, S. J. (2007). Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2. Physical Chemistry Chemical Physics, 9(31), 4315–4331.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhandong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z. (2018). Experimental and Modeling Study of Methylcyclohexane Combustion. In: Experimental and Kinetic Modeling Study of Cyclohexane and Its Mono-alkylated Derivatives Combustion. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-5693-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5693-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5692-5

  • Online ISBN: 978-981-10-5693-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics