Experimental and Kinetic Modeling Study of Cyclohexane and Its Mono-alkylated Derivatives Combustion pp 39-87 | Cite as
Experimental and Modeling Study of Cyclohexane Combustion
Chapter
First Online:
- 1 Citations
- 328 Downloads
Abstract
Cyclohexane (C6H12) has the following properties: molar mass 84.160 g/mol, boiling point 354 K, freezing point 280 K, density 0.799 g/mL, standard enthalpy of formation 123.1 ± 0.79 kJ/mol, standard molar entropy 298.19 J/mol/K, and ionization potential 9.88 ± 0.03 eV.
References
- 1.Prosen, E. J., Johnson, W. H., & Rossini, F. D. (1946). Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons. The Journal of Research of the National Institute of Standards, 37, 51–56.Google Scholar
- 2.Beckett, C. W., Pitzer, K. S., & Spitzer, R. (1947). The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes. Journal of the American Chemical Society, 69(10), 2488–2495.CrossRefGoogle Scholar
- 3.Fernández-Alonso, M. D. C., Cañada, J., Jiménez-Barbero, J., & Cuevas, G. (2005) Theoretical study of inversion and topomerization processes of substituted cyclohexanes: The relevance of the energy 3D hypersurface. ChemPhysChem, 6(4), 671–680.CrossRefGoogle Scholar
- 4.Tsang, W. (1978). Thermal stability of cyclohexane and 1-hexene. International Journal of Chemical Kinetics, 10, 1119–1138.CrossRefGoogle Scholar
- 5.Aribike, D. S., Susu, A. A., & Ogunye, A. F. (1981). Mechanistic and mathematical modeling of the thermal decompostion of cyclohexane. Thermochimica Acta, 51(2–3), 113–127.CrossRefGoogle Scholar
- 6.Brown, T. C., King, K. D., & Nguyent, T. T. (1986). Kinetics of primary processes in the pyrolysis of cyclopentanes and cyclohexanes. Journal of Physical Chemistry, 90, 419–424.CrossRefGoogle Scholar
- 7.Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.CrossRefGoogle Scholar
- 8.Voisin, D., Marchal, A., Reuillon, M., Boettner, J. C., & Cathonnet, M. (1998). Experimental and kinetic modeling study of cyclohexane oxidation in a JSR at high pressure. Combustion Science and Technology, 138(1–6), 137–158.CrossRefGoogle Scholar
- 9.El Bakali, A., Braun-Unkhoff, M., Dagaut, P., Frank, P., & Cathonnet, M. (2000). Detailed kinetic reaction mechanism for cyclohexane oxidation at pressure up to ten atmospheres. Proceedings of the Combustion Institute, 28, 1631–1638.CrossRefGoogle Scholar
- 10.Serinyel, Z., Herbinet, O., Frottier, O., Dirrenberger, P., Warth, V., Glaude, P. A., et al. (2013). An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combustion and Flame, 160, 2319–2332.CrossRefGoogle Scholar
- 11.Sirjean, B., Buda, F., Hakka, H., Glaude, P. A., Fournet, R., Warth, V., et al. (2007). The autoignition of cyclopentane and cyclohexane in a shock tube. Proceedings of the Combustion Institute, 31, 277–284.CrossRefGoogle Scholar
- 12.Daley, S. M., Berkowitz, A. M., & Oehlschlaeger, M. A. (2008). A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures. International Journal of Chemical Kinetics, 40(10), 624–634.CrossRefGoogle Scholar
- 13.Hong, Z., Lam, K.-Y., Davidson, D. F., & Hanson, R. K. (2011). A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures. Combustion and Flame, 158(8), 1456–1468.CrossRefGoogle Scholar
- 14.Lemaire, O., Ribaucour, M., Carlier, M., & Minetti, R. (2001). The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene. Combustion and Flame, 127(1–2), 1971–1980.CrossRefGoogle Scholar
- 15.Vranckx, S., Lee, C., Chakravarty, H. K., & Fernandes, R. X. (2013). A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures. Proceedings of the Combustion Institute, 34(1), 377–384.CrossRefGoogle Scholar
- 16.Yang, Y., & Boehman, A. L. (2009). Experimental study of cyclohexane and methylcyclohexane oxidation at low to intermediate temperature in a motored engine. Proceedings of the Combustion Institute, 32, 419–426.CrossRefGoogle Scholar
- 17.Silke, E. J., Pitz, W. J., Westbrook, C. K., & Ribaucour, M. (2007). Detailed chemical kinetic modeling of cyclohexane oxidation. Journal of Physical Chemistry A, 111(19), 3761–3775.CrossRefGoogle Scholar
- 18.Bennett, P. J., Gregory, D., & Jackson, R. A. (1996). Mechanistic studies on the combustion of isotopically labelled cyclohexanes within a single cylinder internal combustion engine. Combustion Science and Technology, 115(1–3), 83–103.CrossRefGoogle Scholar
- 19.Billaud, F., Chaverot, P., Berthelin, M., & Freund, E. (1988). Thermal decomposition of cyclohexane at approximately 810 °C. Industrial and Engineering Chemistry Research, 27, 759–764.CrossRefGoogle Scholar
- 20.Ciajolo, A., Tregrossi, A., Mallardo, M., Faravelli, T., & Ranzi, E. (2009). Experimental and kinetic modeling study of sooting atmospheric-pressure cyclohexane flame. Proceedings of the Combustion Institute, 32, 585–591.CrossRefGoogle Scholar
- 21.Law, M. E., Westmoreland, P. R., Cool, T. A., Wang, J., Hansen, N., Taatjes, C. A., et al. (2007). Benzene precursors and formation routes in a stoichiometric cyclohexane flame. Proceedings of the Combustion Institute, 31, 565–573.CrossRefGoogle Scholar
- 22.Li, W., Law, M. E., Westmoreland, P. R., Kasper, T., Hansen, N., & Kohse-Höinghaus, K. (2011). Multiple benzene-formation paths in a fuel-rich cyclohexane flame. Combustion and Flame, 158(11), 2077–2089.CrossRefGoogle Scholar
- 23.McEnally, C. S., & Pfefferle, L. D. (2004). Experimental study of fuel decomposition and hydrocarbon growth processes for cyclohexane and related compounds in nonpremixed flames. Combustion and Flame, 136(1–2), 155–167.CrossRefGoogle Scholar
- 24.Davis, S. G., & Law, C. K. (1998). Determination of and fuel structure effects on laminar flame speeds of C1–C8 hydrocarbons. Combustion Science and Technology, 140, 427–449.CrossRefGoogle Scholar
- 25.Ji, C., Dames, E., Sirjean, B., Wang, H., & Egolfopoulos, F. N. (2011). An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames. Proceedings of the Combustion Institute, 33, 971–978.CrossRefGoogle Scholar
- 26.Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.CrossRefGoogle Scholar
- 27.Granata, S., Faravelli, T., & Ranzi, E. (2003). A wide range kinetic modeling study of the pyrolysis and combustion of naphthenes. Combustion and Flame, 132(3), 533–544.CrossRefGoogle Scholar
- 28.Wang, H., Dames, E., Sirjean, B., Sheen, D. A., Tangko, R., Violi, A., et al. (2010) A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19, 2010. (http://melchior.usc.edu/JetSurF/JetSurF2.0).
- 29.Buda, F., Heyberger, B., Fournet, R., Glaude, P. A., Warth, V., & Battin-Leclerc, F. (2006). Modeling of the gas-phase oxidation of cyclohexane. Energy & Fuels, 20(4), 1450–1459.CrossRefGoogle Scholar
- 30.Sirjean, B., Glaude, P. A., Ruiz-Lòpez, M. F., & Fournet, R. (2009). Theoretical kinetic study of the reactions of cycloalkylperoxy radicals. Journal of Physical Chemistry A, 113(25), 6924–6935.CrossRefGoogle Scholar
- 31.Tsang, W. (1988). Chemical kinetic data base for combustion chemistry. Part 3: Propane. Journal of Physical and Chemical Reference Data, 17(2), 887–951.CrossRefGoogle Scholar
- 32.Sirjean, B., Glaude, P. A., Ruiz-Lopez, M. F., & Fournet, R. (2006). Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. Journal of Physical Chemistry A, 110(46), 12693–12704.CrossRefGoogle Scholar
- 33.Sivaramakrishnan, R., & Michael, J. V. (2009). Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes. Combustion and Flame, 156(5), 1126–1134.CrossRefGoogle Scholar
- 34.Cohen, N., & Westberg, K. R. (1986). The use of transition-state theory to extrapolate rate coefficients for reactions of O atoms with alkanes. International Journal of Chemical Kinetics, 18(1), 99–140.CrossRefGoogle Scholar
- 35.Handford-Styring, S. M., & Walker, R. W. (2001). Arrhenius parameters for the reaction HO2 + cyclohexane between 673 and 773 K, and for H atom transfer in cyclohexylperoxy radicals. Physical Chemistry Chemical Physics, 3(11), 2043–2052.CrossRefGoogle Scholar
- 36.Knepp, A. M., Meloni, G., Jusinski, L. E., Taatjes, C. A., Cavallotti, C., & Klippenstein, S. J. (2007). Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2. Physical Chemistry Chemical Physics, 9(31), 4315–4331.CrossRefGoogle Scholar
- 37.Sirjean, B., Glaude, P. A., Ruiz-Lopèz, M. F., & Fournet, R. (2008). Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals. Journal of Physical Chemistry A, 112(46), 11598–11610.CrossRefGoogle Scholar
- 38.Iwan, I., McGivern, W. S., Manion, J. A., & Tsang, W. (2007). The decomposition and isomerization of cyclohexyl and 1-hexenyl radicals. In Proceedings of 5th US Combustion Meeting, San Diego, CA 2007, CO2.Google Scholar
- 39.Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., et al. (2014). Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 161, 84–100.CrossRefGoogle Scholar
- 40.Tsang, W., Walker, J. A., & Manion, J. A. (1998). Single-pulse shock-tube study on the decomposition of 1-pentyl radicals. Symposium (International) on Combustion, 27(1), 135–142.CrossRefGoogle Scholar
- 41.Tsang, W. (2005). Mechanism and rate constants for the decomposition of 1-pentenyl radicals. Journal of Physical Chemistry A, 110(27), 8501–8509.CrossRefGoogle Scholar
- 42.Tsang, W., Walker, J. A., & Manion, J. A. (2007). The decomposition of normal hexyl radicals. Proceedings of the Combustion Institute, 31(1), 141–148.CrossRefGoogle Scholar
- 43.Tsang, W., McGivern, W. S., & Manion, J. A. (2009). Multichannel decomposition and isomerization of octyl radicals. Proceedings of the Combustion Institute, 32(1), 131–138.CrossRefGoogle Scholar
- 44.Gong, C., Li, Z., & Li, X. (2012). Theoretical kinetic study of thermal decomposition of cyclohexane. Energy & Fuels, 26(5), 2811–2820.CrossRefGoogle Scholar
- 45.Kiefer, J. H., & Shah, J. N. (1987). Unimolecular dissociation of cyclohexene at extremely high temperatures: Behavior of the energy-transfer collision efficiency. Journal of Physical Chemistry, 91(11), 3024–3030.CrossRefGoogle Scholar
- 46.Pitz, W. J., Naik, C. V., Mhaoldúin, T. N., Westbrook, C. K., Curran, H. J., Orme, J. P., et al. (2007). Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proceedings of the Combustion Institute, 31, 267–275.CrossRefGoogle Scholar
- 47.Orme, J. P., Curran, H. J., & Simmie, J. M. (2006). Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. Journal of Physical Chemistry A, 110(1), 114–131.CrossRefGoogle Scholar
- 48.Dayma, G., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2003). Experimental and modeling study of the oxidation of cyclohexene. International Journal of Chemical Kinetics, 35(7), 273–285.CrossRefGoogle Scholar
- 49.Sirjean, B., Glaude, P. A., Ruiz-Lopez, M. F., Fournet, R. Theoretical kinetic study of the ring opening and dehydrogenation of cyclic alkenes. Manuscript in preparation.Google Scholar
- 50.Zhang, L., Cai, J., Zhang, T., & Qi, F. (2010). Kinetic modeling study of toluene pyrolysis at low pressure. Combustion and Flame, 157(9), 1686–1697.CrossRefGoogle Scholar
- 51.Li, Y., Cai, J., Zhang, L., Yang, J., Wang, Z., & Qi, F. (2011). Experimental and modeling investigation on premixed ethylbenzene flames at low pressure. Proceedings of the Combustion Institute, 33(1), 617–624.CrossRefGoogle Scholar
- 52.Li, Y., Cai, J., Zhang, L., Yuan, T., Zhang, K., & Qi, F. (2011). Investigation on chemical structures of premixed toluene flames at low pressure. Proceedings of the Combustion Institute, 33(1), 593–600.CrossRefGoogle Scholar
- 53.Wang, Z., Li, Y., Zhang, F., Zhang, L., Yuan, W., Wang, Y., et al. (2013). An experimental and kinetic modeling investigation on a rich premixed n-propylbenzene flame at low pressure. Proceedings of the Combustion Institute, 34(1), 1785–1793.CrossRefGoogle Scholar
- 54.Hansen, N., Miller, J. A., Westmoreland, P. R., Kasper, T., Kohse-Höinghaus, K., Wang, J., et al. (2009). Isomer-specific combustion chemistry in allene and propyne flames. Combustion and Flame, 156(11), 2153–2164.CrossRefGoogle Scholar
- 55.Miller, J. A., & Klippenstein, S. J. (2003). The recombination of propargyl radicals and other reactions on a C6H6 potential. Journal of Physical Chemistry A, 107(39), 7783–7799.CrossRefGoogle Scholar
- 56.Georgievskii, Y., Miller, J. A., & Klippenstein, S. J. (2007). Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5. Physical Chemistry Chemical Physics, 9(31), 4259–4268.CrossRefGoogle Scholar
- 57.Scherer, S., Just, T., & Frank, P. (2000). High-temeprature investigations on pyrolytic reactions of propargyl radicals. Proceedings of the Combustion Institute, 28(2), 1511–1518.CrossRefGoogle Scholar
- 58.Fernandes, R. X., Hippler, H., & Olzmann, M. (2005). Determination of the rate coefficient for the C3H3 + C3H3 reaction at high temperatures by shock-tube investigations. Proceedings of the Combustion Institute, 30(1), 1033–1038.CrossRefGoogle Scholar
- 59.D’Anna, A., & Kent, J. H. (2003). Aromatic formation pathways in non-premixed methane flames. Combustion and Flame, 132(4), 715–722.CrossRefGoogle Scholar
- 60.Wu, C. H., & Kern, R. D. (1987). Shock-tube study of allene pyrolysis. Journal of Physical Chemistry, 91(24), 6291–6296.CrossRefGoogle Scholar
- 61.Senosiain, J. P., & Miller, J. A. (2007). The reaction of n- and i-C4H5 radicals with acetylene. Journal of Physical Chemistry A, 111(19), 3740–3747.CrossRefGoogle Scholar
- 62.Lindstedt, R. P., & Skevis, G. (1997). Chemistry of acetylene flames. Combustion Science and Technology, 125(1–6), 73–137.CrossRefGoogle Scholar
- 63.Marinov, N. M., Castaldi, M. J., Melius, C. F., & Tsang, W. (1997). Aromatic and polycyclic aromatic hydrocarbon formation in a premixed propane flame. Combustion Science and Technology, 128(1–6), 295–342.CrossRefGoogle Scholar
- 64.Miller, J. A., Georgievskii, Y., Allen, W. D., & Klippenstein, S. J. Unpublished data.Google Scholar
- 65.Hansen, N., Miller, J. A., Kasper, T., Kohse-Höinghaus, K., Westmoreland, P. R., Wang, J., et al. (2009). Benzene formation in premixed fuel-rich 1,3-butadiene flames. Proceedings of the Combustion Institute, 32(1), 623–630.CrossRefGoogle Scholar
- 66.Violi, A., Truong, T. N., & Sarofim, A. F. (2004). Kinetics of hydrogen abstraction reactions from polycyclic aromatic hydrocarbons by H atoms. Journal of Physical Chemistry A, 108(22), 4846–4852.CrossRefGoogle Scholar
- 67.Seta, T., Nakajima, M., & Miyoshi, A. (2006). High-temperature reactions of OH radicals with benzene and toluene. Journal of Physical Chemistry A, 110(15), 5081–5090.CrossRefGoogle Scholar
- 68.Roy, K., Horn, C., Frank, P., Slutsky, V. G., & Just, T. (1998). High-temperature investigations on the pyrolysis of cyclopentadiene. Symposium (International) on Combustion, 27(1), 329–336.CrossRefGoogle Scholar
- 69.Bacskay, G. B., & Mackie, J. C. (2001). The pyrolysis of cyclopentadiene: quantum chemical and kinetic modelling studies of the acetylene plus propyne/allene decomposition channels. Physical Chemistry Chemical Physics, 3(12), 2467–2473.CrossRefGoogle Scholar
- 70.Wang, H., You, X., Joshi, A. V., Davis, S. G., Laskin, A., & Egolfopoulos, F., et al. (2007). High-temperature combustion reaction model of H2/CO/C1–C4 compounds. http://ignis.usc.edu/USC_Mech_II.htm.
- 71.Richter, H., Granata, S., Green, W. H., & Howard, J. B. (2005). Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proceedings of the Combustion Institute, 30(1), 1397–1405.CrossRefGoogle Scholar
- 72.Moskaleva, L. V., & Lin, M. C. (2000). Unimolecular isomerization/decomposition of cyclopentadienyl and related bimolecular reverse process: ab initio MO/statistical theory study. Journal of Computational Chemistry, 21(6), 415–425.CrossRefGoogle Scholar
- 73.Zhong, X., & Bozzelli, J. W. (1998). Thermochemical and kinetic analysis of the H, OH, HO2, O, and O2 association reactions with cyclopentadienyl radical. Journal of Physical Chemistry A, 102(20), 3537–3555.CrossRefGoogle Scholar
- 74.Zhang, Y., Cai, J., Zhao, Lo, Yang, J., Jin, H., Cheng, Z., et al. (2012). An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combustion and Flame, 159, 905–917.CrossRefGoogle Scholar
- 75.Laskin, A., Wang, H., & Law, C. K. (2000). Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures. International Journal of Chemical Kinetics, 32(10), 589–614.CrossRefGoogle Scholar
- 76.Miller, J. A., Senosiain, J. P., Klippenstein, S. J., & Georgievskii, Y. (2008). Reactions over multiple, interconnected potential wells: unimolecular and bimolecular reactions on a C3H5 potential. Journal of Physical Chemistry A, 112(39), 9429–9438.CrossRefGoogle Scholar
- 77.Davis, S. G., Law, C. K., & Wang, H. (1999). Propyne pyrolysis in a flow reactor: An experimental, RRKM, and detailed kinetic modeling study. Journal of Physical Chemistry A, 103(30), 5889–5899.CrossRefGoogle Scholar
- 78.Wang, H., & Frenklach, M. (1997). A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 110, 173–221.CrossRefGoogle Scholar
- 79.Miller, J. A. Private communicatioin.Google Scholar
- 80.Tokmakov, I. V., Park, J., Gheyas, S., & Lin, M. C. (1999). Experimental and theoretical studies of the reaction of the phenyl radical with methane. Journal of Physical Chemistry A, 103(19), 3636–3645.CrossRefGoogle Scholar
- 81.Asaba, T., & Fujii, N. (1971). High temperature oxidation of benzene. Proceedings of the International Symposium Shock Tubes Waves, 8, 1–12.Google Scholar
- 82.Alzueta, M. U., Glarborg, P., & Dam-Johansen, K. (2000). Experimental and kinetic modeling study of the oxidation of benzene. International Journal of Chemical Kinetics, 32(8), 498–522.CrossRefGoogle Scholar
- 83.Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Frank, P., Just, T., et al. (1992). Evaluated kinetic data for combustion modelling. Journal of Physical and Chemical Reference Data, 21(3), 411–734.CrossRefGoogle Scholar
- 84.Wang, Z., Cheng, Z., Yuan, W., Cai, J., Zhang, L., Zhang, F., et al. (2012). An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combustion and Flame, 159(7), 2243–2253.CrossRefGoogle Scholar
- 85.Taatjes, C. A., Osborn, D. L., Selby, T. M., Meloni, G., Fan, H. Y., & Pratt, S. T. (2008). Absolute photoionization cross-section of the methyl radical. Journal of Physical Chemistry A, 112(39), 9336–9343.CrossRefGoogle Scholar
- 86.Cool, T. A., Wang, J., Nakajima, K., Taatjes, C. A., & McIlroy, A. (2005). Photoionization cross sections for reaction intermediates in hydrocarbon combustion. International Journal of Mass Spectrometry, 247(1–3), 18–27.CrossRefGoogle Scholar
- 87.Robinson, J. C., Sveum, N. E., & Neumark, D. M. (2003). Determination of absolute photoionization cross sections for vinyl and propargyl radicals. The Journal of Chemical Physics, 119(11), 5311–5314.CrossRefGoogle Scholar
- 88.Yang, B., Wang, J., Cool, T. A., Hansen, N., Skeen, S., & Osborn, D. L. (2012). Absolute photoionization cross-sections of some combustion intermediates. International Journal of Mass Spectrometry, 309, 118–128.CrossRefGoogle Scholar
- 89.Robinson, J. C., Sveum, N. E., & Neumark, D. M. (2004). Determination of absolute photoionization cross sections for isomers of C3H5: Allyl and 2-propenyl radicals. Chemical Physics Letters, 383(5–6), 601–605.CrossRefGoogle Scholar
- 90.Cool, T. A., Nakajima, K., Mostefaoui, T. A., Qi, F., McIlroy, A., Westmoreland, P. R., et al. (2003). Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. The Journal of Chemical Physics, 119(16), 8356–8365.CrossRefGoogle Scholar
- 91.Koizumi, H. (1991). Predominant decay channel for superexcited organic molecules. The Journal of Chemical Physics, 95(8), 5846–5852.CrossRefGoogle Scholar
- 92.Wang, J., Yang, B., Cool, T. A., Hansen, N., & Kasper, T. (2008). Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion. International Journal of Mass Spectrometry, 269(3), 210–220.CrossRefGoogle Scholar
- 93.Hansen, N., Klippenstein, S. J., Miller, J. A., Wang, J., Cool, T. A., Law, M. E., et al. (2006). Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations. Journal of Physical Chemistry A, 110(13), 4376–4388.CrossRefGoogle Scholar
- 94.Zhou, Z., Zhang, L., Xie, M., Wang, Z., Chen, D., & Qi, F. (2010). Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes. Rapid Communications in Mass Spectrometry, 24(9), 1335–1342.CrossRefGoogle Scholar
- 95.CHEMKIN-PRO 15092. (2009). Reaction design. San Diego.Google Scholar
- 96.Hansen, N., Kasper, T., Yang, B., Cool, T. A., Li, W. J., Westmoreland, P. R., et al. (2011). Fuel-structure dependence of benzene formation processes in premixed flames fueled by C6H12 isomers. Proceedings of the Combustion Institute, 33(1), 585–592.CrossRefGoogle Scholar
- 97.Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., et al. (2010). The importance of fuel dissociation and propargyl plus allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics, 12(38), 12112–12122.CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2018