Skip to main content

Experimental and Modeling Study of Cyclohexane Combustion

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Cyclohexane (C6H12) has the following properties: molar mass 84.160 g/mol, boiling point 354 K, freezing point 280 K, density 0.799 g/mL, standard enthalpy of formation 123.1 ± 0.79 kJ/mol, standard molar entropy 298.19 J/mol/K, and ionization potential 9.88 ± 0.03 eV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prosen, E. J., Johnson, W. H., & Rossini, F. D. (1946). Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons. The Journal of Research of the National Institute of Standards, 37, 51–56.

    Google Scholar 

  2. Beckett, C. W., Pitzer, K. S., & Spitzer, R. (1947). The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes. Journal of the American Chemical Society, 69(10), 2488–2495.

    Article  Google Scholar 

  3. Fernández-Alonso, M. D. C., Cañada, J., Jiménez-Barbero, J., & Cuevas, G. (2005) Theoretical study of inversion and topomerization processes of substituted cyclohexanes: The relevance of the energy 3D hypersurface. ChemPhysChem, 6(4), 671–680.

    Article  Google Scholar 

  4. Tsang, W. (1978). Thermal stability of cyclohexane and 1-hexene. International Journal of Chemical Kinetics, 10, 1119–1138.

    Article  Google Scholar 

  5. Aribike, D. S., Susu, A. A., & Ogunye, A. F. (1981). Mechanistic and mathematical modeling of the thermal decompostion of cyclohexane. Thermochimica Acta, 51(2–3), 113–127.

    Article  Google Scholar 

  6. Brown, T. C., King, K. D., & Nguyent, T. T. (1986). Kinetics of primary processes in the pyrolysis of cyclopentanes and cyclohexanes. Journal of Physical Chemistry, 90, 419–424.

    Article  Google Scholar 

  7. Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.

    Article  Google Scholar 

  8. Voisin, D., Marchal, A., Reuillon, M., Boettner, J. C., & Cathonnet, M. (1998). Experimental and kinetic modeling study of cyclohexane oxidation in a JSR at high pressure. Combustion Science and Technology, 138(1–6), 137–158.

    Article  Google Scholar 

  9. El Bakali, A., Braun-Unkhoff, M., Dagaut, P., Frank, P., & Cathonnet, M. (2000). Detailed kinetic reaction mechanism for cyclohexane oxidation at pressure up to ten atmospheres. Proceedings of the Combustion Institute, 28, 1631–1638.

    Article  Google Scholar 

  10. Serinyel, Z., Herbinet, O., Frottier, O., Dirrenberger, P., Warth, V., Glaude, P. A., et al. (2013). An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combustion and Flame, 160, 2319–2332.

    Article  Google Scholar 

  11. Sirjean, B., Buda, F., Hakka, H., Glaude, P. A., Fournet, R., Warth, V., et al. (2007). The autoignition of cyclopentane and cyclohexane in a shock tube. Proceedings of the Combustion Institute, 31, 277–284.

    Article  Google Scholar 

  12. Daley, S. M., Berkowitz, A. M., & Oehlschlaeger, M. A. (2008). A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures. International Journal of Chemical Kinetics, 40(10), 624–634.

    Article  Google Scholar 

  13. Hong, Z., Lam, K.-Y., Davidson, D. F., & Hanson, R. K. (2011). A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures. Combustion and Flame, 158(8), 1456–1468.

    Article  Google Scholar 

  14. Lemaire, O., Ribaucour, M., Carlier, M., & Minetti, R. (2001). The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene. Combustion and Flame, 127(1–2), 1971–1980.

    Article  Google Scholar 

  15. Vranckx, S., Lee, C., Chakravarty, H. K., & Fernandes, R. X. (2013). A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures. Proceedings of the Combustion Institute, 34(1), 377–384.

    Article  Google Scholar 

  16. Yang, Y., & Boehman, A. L. (2009). Experimental study of cyclohexane and methylcyclohexane oxidation at low to intermediate temperature in a motored engine. Proceedings of the Combustion Institute, 32, 419–426.

    Article  Google Scholar 

  17. Silke, E. J., Pitz, W. J., Westbrook, C. K., & Ribaucour, M. (2007). Detailed chemical kinetic modeling of cyclohexane oxidation. Journal of Physical Chemistry A, 111(19), 3761–3775.

    Article  Google Scholar 

  18. Bennett, P. J., Gregory, D., & Jackson, R. A. (1996). Mechanistic studies on the combustion of isotopically labelled cyclohexanes within a single cylinder internal combustion engine. Combustion Science and Technology, 115(1–3), 83–103.

    Article  Google Scholar 

  19. Billaud, F., Chaverot, P., Berthelin, M., & Freund, E. (1988). Thermal decomposition of cyclohexane at approximately 810 °C. Industrial and Engineering Chemistry Research, 27, 759–764.

    Article  Google Scholar 

  20. Ciajolo, A., Tregrossi, A., Mallardo, M., Faravelli, T., & Ranzi, E. (2009). Experimental and kinetic modeling study of sooting atmospheric-pressure cyclohexane flame. Proceedings of the Combustion Institute, 32, 585–591.

    Article  Google Scholar 

  21. Law, M. E., Westmoreland, P. R., Cool, T. A., Wang, J., Hansen, N., Taatjes, C. A., et al. (2007). Benzene precursors and formation routes in a stoichiometric cyclohexane flame. Proceedings of the Combustion Institute, 31, 565–573.

    Article  Google Scholar 

  22. Li, W., Law, M. E., Westmoreland, P. R., Kasper, T., Hansen, N., & Kohse-Höinghaus, K. (2011). Multiple benzene-formation paths in a fuel-rich cyclohexane flame. Combustion and Flame, 158(11), 2077–2089.

    Article  Google Scholar 

  23. McEnally, C. S., & Pfefferle, L. D. (2004). Experimental study of fuel decomposition and hydrocarbon growth processes for cyclohexane and related compounds in nonpremixed flames. Combustion and Flame, 136(1–2), 155–167.

    Article  Google Scholar 

  24. Davis, S. G., & Law, C. K. (1998). Determination of and fuel structure effects on laminar flame speeds of C1–C8 hydrocarbons. Combustion Science and Technology, 140, 427–449.

    Article  Google Scholar 

  25. Ji, C., Dames, E., Sirjean, B., Wang, H., & Egolfopoulos, F. N. (2011). An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames. Proceedings of the Combustion Institute, 33, 971–978.

    Article  Google Scholar 

  26. Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.

    Article  Google Scholar 

  27. Granata, S., Faravelli, T., & Ranzi, E. (2003). A wide range kinetic modeling study of the pyrolysis and combustion of naphthenes. Combustion and Flame, 132(3), 533–544.

    Article  Google Scholar 

  28. Wang, H., Dames, E., Sirjean, B., Sheen, D. A., Tangko, R., Violi, A., et al. (2010) A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19, 2010. (http://melchior.usc.edu/JetSurF/JetSurF2.0).

  29. Buda, F., Heyberger, B., Fournet, R., Glaude, P. A., Warth, V., & Battin-Leclerc, F. (2006). Modeling of the gas-phase oxidation of cyclohexane. Energy & Fuels, 20(4), 1450–1459.

    Article  Google Scholar 

  30. Sirjean, B., Glaude, P. A., Ruiz-Lòpez, M. F., & Fournet, R. (2009). Theoretical kinetic study of the reactions of cycloalkylperoxy radicals. Journal of Physical Chemistry A, 113(25), 6924–6935.

    Article  Google Scholar 

  31. Tsang, W. (1988). Chemical kinetic data base for combustion chemistry. Part 3: Propane. Journal of Physical and Chemical Reference Data, 17(2), 887–951.

    Article  Google Scholar 

  32. Sirjean, B., Glaude, P. A., Ruiz-Lopez, M. F., & Fournet, R. (2006). Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. Journal of Physical Chemistry A, 110(46), 12693–12704.

    Article  Google Scholar 

  33. Sivaramakrishnan, R., & Michael, J. V. (2009). Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes. Combustion and Flame, 156(5), 1126–1134.

    Article  Google Scholar 

  34. Cohen, N., & Westberg, K. R. (1986). The use of transition-state theory to extrapolate rate coefficients for reactions of O atoms with alkanes. International Journal of Chemical Kinetics, 18(1), 99–140.

    Article  Google Scholar 

  35. Handford-Styring, S. M., & Walker, R. W. (2001). Arrhenius parameters for the reaction HO2 + cyclohexane between 673 and 773 K, and for H atom transfer in cyclohexylperoxy radicals. Physical Chemistry Chemical Physics, 3(11), 2043–2052.

    Article  Google Scholar 

  36. Knepp, A. M., Meloni, G., Jusinski, L. E., Taatjes, C. A., Cavallotti, C., & Klippenstein, S. J. (2007). Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2. Physical Chemistry Chemical Physics, 9(31), 4315–4331.

    Article  Google Scholar 

  37. Sirjean, B., Glaude, P. A., Ruiz-Lopèz, M. F., & Fournet, R. (2008). Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals. Journal of Physical Chemistry A, 112(46), 11598–11610.

    Article  Google Scholar 

  38. Iwan, I., McGivern, W. S., Manion, J. A., & Tsang, W. (2007). The decomposition and isomerization of cyclohexyl and 1-hexenyl radicals. In Proceedings of 5th US Combustion Meeting, San Diego, CA 2007, CO2.

    Google Scholar 

  39. Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., et al. (2014). Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 161, 84–100.

    Article  Google Scholar 

  40. Tsang, W., Walker, J. A., & Manion, J. A. (1998). Single-pulse shock-tube study on the decomposition of 1-pentyl radicals. Symposium (International) on Combustion, 27(1), 135–142.

    Article  Google Scholar 

  41. Tsang, W. (2005). Mechanism and rate constants for the decomposition of 1-pentenyl radicals. Journal of Physical Chemistry A, 110(27), 8501–8509.

    Article  Google Scholar 

  42. Tsang, W., Walker, J. A., & Manion, J. A. (2007). The decomposition of normal hexyl radicals. Proceedings of the Combustion Institute, 31(1), 141–148.

    Article  Google Scholar 

  43. Tsang, W., McGivern, W. S., & Manion, J. A. (2009). Multichannel decomposition and isomerization of octyl radicals. Proceedings of the Combustion Institute, 32(1), 131–138.

    Article  Google Scholar 

  44. Gong, C., Li, Z., & Li, X. (2012). Theoretical kinetic study of thermal decomposition of cyclohexane. Energy & Fuels, 26(5), 2811–2820.

    Article  Google Scholar 

  45. Kiefer, J. H., & Shah, J. N. (1987). Unimolecular dissociation of cyclohexene at extremely high temperatures: Behavior of the energy-transfer collision efficiency. Journal of Physical Chemistry, 91(11), 3024–3030.

    Article  Google Scholar 

  46. Pitz, W. J., Naik, C. V., Mhaoldúin, T. N., Westbrook, C. K., Curran, H. J., Orme, J. P., et al. (2007). Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proceedings of the Combustion Institute, 31, 267–275.

    Article  Google Scholar 

  47. Orme, J. P., Curran, H. J., & Simmie, J. M. (2006). Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. Journal of Physical Chemistry A, 110(1), 114–131.

    Article  Google Scholar 

  48. Dayma, G., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2003). Experimental and modeling study of the oxidation of cyclohexene. International Journal of Chemical Kinetics, 35(7), 273–285.

    Article  Google Scholar 

  49. Sirjean, B., Glaude, P. A., Ruiz-Lopez, M. F., Fournet, R. Theoretical kinetic study of the ring opening and dehydrogenation of cyclic alkenes. Manuscript in preparation.

    Google Scholar 

  50. Zhang, L., Cai, J., Zhang, T., & Qi, F. (2010). Kinetic modeling study of toluene pyrolysis at low pressure. Combustion and Flame, 157(9), 1686–1697.

    Article  Google Scholar 

  51. Li, Y., Cai, J., Zhang, L., Yang, J., Wang, Z., & Qi, F. (2011). Experimental and modeling investigation on premixed ethylbenzene flames at low pressure. Proceedings of the Combustion Institute, 33(1), 617–624.

    Article  Google Scholar 

  52. Li, Y., Cai, J., Zhang, L., Yuan, T., Zhang, K., & Qi, F. (2011). Investigation on chemical structures of premixed toluene flames at low pressure. Proceedings of the Combustion Institute, 33(1), 593–600.

    Article  Google Scholar 

  53. Wang, Z., Li, Y., Zhang, F., Zhang, L., Yuan, W., Wang, Y., et al. (2013). An experimental and kinetic modeling investigation on a rich premixed n-propylbenzene flame at low pressure. Proceedings of the Combustion Institute, 34(1), 1785–1793.

    Article  Google Scholar 

  54. Hansen, N., Miller, J. A., Westmoreland, P. R., Kasper, T., Kohse-Höinghaus, K., Wang, J., et al. (2009). Isomer-specific combustion chemistry in allene and propyne flames. Combustion and Flame, 156(11), 2153–2164.

    Article  Google Scholar 

  55. Miller, J. A., & Klippenstein, S. J. (2003). The recombination of propargyl radicals and other reactions on a C6H6 potential. Journal of Physical Chemistry A, 107(39), 7783–7799.

    Article  Google Scholar 

  56. Georgievskii, Y., Miller, J. A., & Klippenstein, S. J. (2007). Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5. Physical Chemistry Chemical Physics, 9(31), 4259–4268.

    Article  Google Scholar 

  57. Scherer, S., Just, T., & Frank, P. (2000). High-temeprature investigations on pyrolytic reactions of propargyl radicals. Proceedings of the Combustion Institute, 28(2), 1511–1518.

    Article  Google Scholar 

  58. Fernandes, R. X., Hippler, H., & Olzmann, M. (2005). Determination of the rate coefficient for the C3H3 + C3H3 reaction at high temperatures by shock-tube investigations. Proceedings of the Combustion Institute, 30(1), 1033–1038.

    Article  Google Scholar 

  59. D’Anna, A., & Kent, J. H. (2003). Aromatic formation pathways in non-premixed methane flames. Combustion and Flame, 132(4), 715–722.

    Article  Google Scholar 

  60. Wu, C. H., & Kern, R. D. (1987). Shock-tube study of allene pyrolysis. Journal of Physical Chemistry, 91(24), 6291–6296.

    Article  Google Scholar 

  61. Senosiain, J. P., & Miller, J. A. (2007). The reaction of n- and i-C4H5 radicals with acetylene. Journal of Physical Chemistry A, 111(19), 3740–3747.

    Article  Google Scholar 

  62. Lindstedt, R. P., & Skevis, G. (1997). Chemistry of acetylene flames. Combustion Science and Technology, 125(1–6), 73–137.

    Article  Google Scholar 

  63. Marinov, N. M., Castaldi, M. J., Melius, C. F., & Tsang, W. (1997). Aromatic and polycyclic aromatic hydrocarbon formation in a premixed propane flame. Combustion Science and Technology, 128(1–6), 295–342.

    Article  Google Scholar 

  64. Miller, J. A., Georgievskii, Y., Allen, W. D., & Klippenstein, S. J. Unpublished data.

    Google Scholar 

  65. Hansen, N., Miller, J. A., Kasper, T., Kohse-Höinghaus, K., Westmoreland, P. R., Wang, J., et al. (2009). Benzene formation in premixed fuel-rich 1,3-butadiene flames. Proceedings of the Combustion Institute, 32(1), 623–630.

    Article  Google Scholar 

  66. Violi, A., Truong, T. N., & Sarofim, A. F. (2004). Kinetics of hydrogen abstraction reactions from polycyclic aromatic hydrocarbons by H atoms. Journal of Physical Chemistry A, 108(22), 4846–4852.

    Article  Google Scholar 

  67. Seta, T., Nakajima, M., & Miyoshi, A. (2006). High-temperature reactions of OH radicals with benzene and toluene. Journal of Physical Chemistry A, 110(15), 5081–5090.

    Article  Google Scholar 

  68. Roy, K., Horn, C., Frank, P., Slutsky, V. G., & Just, T. (1998). High-temperature investigations on the pyrolysis of cyclopentadiene. Symposium (International) on Combustion, 27(1), 329–336.

    Article  Google Scholar 

  69. Bacskay, G. B., & Mackie, J. C. (2001). The pyrolysis of cyclopentadiene: quantum chemical and kinetic modelling studies of the acetylene plus propyne/allene decomposition channels. Physical Chemistry Chemical Physics, 3(12), 2467–2473.

    Article  Google Scholar 

  70. Wang, H., You, X., Joshi, A. V., Davis, S. G., Laskin, A., & Egolfopoulos, F., et al. (2007). High-temperature combustion reaction model of H2/CO/C1–C4 compounds. http://ignis.usc.edu/USC_Mech_II.htm.

  71. Richter, H., Granata, S., Green, W. H., & Howard, J. B. (2005). Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proceedings of the Combustion Institute, 30(1), 1397–1405.

    Article  Google Scholar 

  72. Moskaleva, L. V., & Lin, M. C. (2000). Unimolecular isomerization/decomposition of cyclopentadienyl and related bimolecular reverse process: ab initio MO/statistical theory study. Journal of Computational Chemistry, 21(6), 415–425.

    Article  Google Scholar 

  73. Zhong, X., & Bozzelli, J. W. (1998). Thermochemical and kinetic analysis of the H, OH, HO2, O, and O2 association reactions with cyclopentadienyl radical. Journal of Physical Chemistry A, 102(20), 3537–3555.

    Article  Google Scholar 

  74. Zhang, Y., Cai, J., Zhao, Lo, Yang, J., Jin, H., Cheng, Z., et al. (2012). An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combustion and Flame, 159, 905–917.

    Article  Google Scholar 

  75. Laskin, A., Wang, H., & Law, C. K. (2000). Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures. International Journal of Chemical Kinetics, 32(10), 589–614.

    Article  Google Scholar 

  76. Miller, J. A., Senosiain, J. P., Klippenstein, S. J., & Georgievskii, Y. (2008). Reactions over multiple, interconnected potential wells: unimolecular and bimolecular reactions on a C3H5 potential. Journal of Physical Chemistry A, 112(39), 9429–9438.

    Article  Google Scholar 

  77. Davis, S. G., Law, C. K., & Wang, H. (1999). Propyne pyrolysis in a flow reactor: An experimental, RRKM, and detailed kinetic modeling study. Journal of Physical Chemistry A, 103(30), 5889–5899.

    Article  Google Scholar 

  78. Wang, H., & Frenklach, M. (1997). A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 110, 173–221.

    Article  Google Scholar 

  79. Miller, J. A. Private communicatioin.

    Google Scholar 

  80. Tokmakov, I. V., Park, J., Gheyas, S., & Lin, M. C. (1999). Experimental and theoretical studies of the reaction of the phenyl radical with methane. Journal of Physical Chemistry A, 103(19), 3636–3645.

    Article  Google Scholar 

  81. Asaba, T., & Fujii, N. (1971). High temperature oxidation of benzene. Proceedings of the International Symposium Shock Tubes Waves, 8, 1–12.

    Google Scholar 

  82. Alzueta, M. U., Glarborg, P., & Dam-Johansen, K. (2000). Experimental and kinetic modeling study of the oxidation of benzene. International Journal of Chemical Kinetics, 32(8), 498–522.

    Article  Google Scholar 

  83. Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Frank, P., Just, T., et al. (1992). Evaluated kinetic data for combustion modelling. Journal of Physical and Chemical Reference Data, 21(3), 411–734.

    Article  Google Scholar 

  84. Wang, Z., Cheng, Z., Yuan, W., Cai, J., Zhang, L., Zhang, F., et al. (2012). An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combustion and Flame, 159(7), 2243–2253.

    Article  Google Scholar 

  85. Taatjes, C. A., Osborn, D. L., Selby, T. M., Meloni, G., Fan, H. Y., & Pratt, S. T. (2008). Absolute photoionization cross-section of the methyl radical. Journal of Physical Chemistry A, 112(39), 9336–9343.

    Article  Google Scholar 

  86. Cool, T. A., Wang, J., Nakajima, K., Taatjes, C. A., & McIlroy, A. (2005). Photoionization cross sections for reaction intermediates in hydrocarbon combustion. International Journal of Mass Spectrometry, 247(1–3), 18–27.

    Article  Google Scholar 

  87. Robinson, J. C., Sveum, N. E., & Neumark, D. M. (2003). Determination of absolute photoionization cross sections for vinyl and propargyl radicals. The Journal of Chemical Physics, 119(11), 5311–5314.

    Article  Google Scholar 

  88. Yang, B., Wang, J., Cool, T. A., Hansen, N., Skeen, S., & Osborn, D. L. (2012). Absolute photoionization cross-sections of some combustion intermediates. International Journal of Mass Spectrometry, 309, 118–128.

    Article  Google Scholar 

  89. Robinson, J. C., Sveum, N. E., & Neumark, D. M. (2004). Determination of absolute photoionization cross sections for isomers of C3H5: Allyl and 2-propenyl radicals. Chemical Physics Letters, 383(5–6), 601–605.

    Article  Google Scholar 

  90. Cool, T. A., Nakajima, K., Mostefaoui, T. A., Qi, F., McIlroy, A., Westmoreland, P. R., et al. (2003). Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. The Journal of Chemical Physics, 119(16), 8356–8365.

    Article  Google Scholar 

  91. Koizumi, H. (1991). Predominant decay channel for superexcited organic molecules. The Journal of Chemical Physics, 95(8), 5846–5852.

    Article  Google Scholar 

  92. Wang, J., Yang, B., Cool, T. A., Hansen, N., & Kasper, T. (2008). Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion. International Journal of Mass Spectrometry, 269(3), 210–220.

    Article  Google Scholar 

  93. Hansen, N., Klippenstein, S. J., Miller, J. A., Wang, J., Cool, T. A., Law, M. E., et al. (2006). Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations. Journal of Physical Chemistry A, 110(13), 4376–4388.

    Article  Google Scholar 

  94. Zhou, Z., Zhang, L., Xie, M., Wang, Z., Chen, D., & Qi, F. (2010). Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes. Rapid Communications in Mass Spectrometry, 24(9), 1335–1342.

    Article  Google Scholar 

  95. CHEMKIN-PRO 15092. (2009). Reaction design. San Diego.

    Google Scholar 

  96. Hansen, N., Kasper, T., Yang, B., Cool, T. A., Li, W. J., Westmoreland, P. R., et al. (2011). Fuel-structure dependence of benzene formation processes in premixed flames fueled by C6H12 isomers. Proceedings of the Combustion Institute, 33(1), 585–592.

    Article  Google Scholar 

  97. Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., et al. (2010). The importance of fuel dissociation and propargyl plus allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics, 12(38), 12112–12122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhandong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z. (2018). Experimental and Modeling Study of Cyclohexane Combustion. In: Experimental and Kinetic Modeling Study of Cyclohexane and Its Mono-alkylated Derivatives Combustion. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-5693-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5693-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5692-5

  • Online ISBN: 978-981-10-5693-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics