Advertisement

Experimental Method and Kinetic Modeling

  • Zhandong WangEmail author
Chapter
  • 296 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This thesis investigates flow reactor pyrolysis and laminar premixed flame of cyclohexane, methylcyclohexane and ethylcyclohexane. The experiment was performed at the National Synchrotron Radiation Laboratory (NSRL), at the University of Science and Technology of China.

Keywords

National Synchrotron Radiation Laboratory (NSRL) Laminar Premixed Flame Ethylcyclohexane Pyrolysis Chamber Specific Photon Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Qi, F. (2013). Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proceedings of the Combustion Institute, 34, 33–63.CrossRefGoogle Scholar
  2. 2.
    Zhang, T., Zhu, A., Hong, X., Pan, Y., Shan, X., Sheng, L., Zhang, Y., Qi, F. (2007). A gas filter system of U14C beamline at National Synchrotron Radiation Laboratory. Journal of University of Science and Technology of China, 37, 582–585.Google Scholar
  3. 3.
    Zhang, T., Wang, J., Yuan, T., Hong, X., Zhang, L., & Qi, F. (2008). Pyrolysis of Methyl tert-Butyl Ether (MTBE). 1. Experimental study with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization. Journal of Physical Chemistry A, 112(42), 10487–10494.CrossRefGoogle Scholar
  4. 4.
    Wang, Z., Bian, H., Wang, Y., Zhang, L., Li, Y., Zhang, F., et al. (2015). Investigation on primary decomposition of ethylcyclohexane at atmospheric pressure. Proceedings of the Combustion Institute, 35(1), 367–375.CrossRefGoogle Scholar
  5. 5.
    Cheng, Z., Xing, L., Zeng, M., Dong, W., Zhang, F., Qi, F., et al. (2014). Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures. Combustion and Flame, 161, 2496–2511.CrossRefGoogle Scholar
  6. 6.
    Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., et al. (2014). Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 161, 84–100.CrossRefGoogle Scholar
  7. 7.
    Yuan, T. (2010). Studies on pyrolysis and premixed flames of n-heptane and iso-octane. Ph.D. Thesis, University of Science and Technology of China.Google Scholar
  8. 8.
    Zhang, Y. (2011). Experimental and kinetic modeling studies on pyrolysis of C4 alkenes and alkanes. Ph.D. Thesis, University of Science and Technology of China.Google Scholar
  9. 9.
    Xie, M. (2012). Experimental and kinetic modeling studies on pyrolysis of C3—C5 chain fat acid methyl esters. Ph.D. Thesis, University of Science and Technology of China.Google Scholar
  10. 10.
    Yang, J. (2012). Experimental and modeling study of low-pressure combustion of benzene and benzene/C2H6O mixtures. Ph.D. Thesis, University of Science and Technology of China.Google Scholar
  11. 11.
    Cai, J. (2013). Experimental and kinetic modeling studies of butanol combustion. Ph.D. Thesis, University of Science and Technology of China.Google Scholar
  12. 12.
    NIST/EPA/NIH Mass Spectral Library (NIST 08). NIST.Google Scholar
  13. 13.
    Li. Y. (2010). Experimental and kinetic modeling study of premixed aromatic hydrocarbon flames at low pressure. Ph.D. Thesis, University of Science and Technology of China.Google Scholar
  14. 14.
    Qi, F., Yang, R., Yang, B., Huang, C., Wei, L., Wang, J., et al. (2006). Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization. Review of Scientific Instruments, 77(8), 084101.CrossRefGoogle Scholar
  15. 15.
    Kint, J. H. (1970). A noncatalytic coating for platinum-rhodium thermocouples. Combustion and Flame, 14(2), 279–281.CrossRefGoogle Scholar
  16. 16.
    Shandross, R. A., Longwell, J. P., & Howard, J. B. (1991). Noncatalytic thermocouple coating for low-pressure flames. Combustion and Flame, 85(1–2), 282–284.CrossRefGoogle Scholar
  17. 17.
    Wei, L. (2006). Studies on VUV Photoionization and Combustion of Some C3 Oxygen-Contained Compounds. Ph.D. Thesis, University of Science and Technology of China.Google Scholar
  18. 18.
    Hartlieb, A. T., Atakan, B., & Kohse-Höinghaus, K. (2000). Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame. Combustion and Flame, 121(4), 610–624.CrossRefGoogle Scholar
  19. 19.
    Cool, T. A., Nakajima, K., Taatjes, C. A., McIlroy, A., Westmoreland, P. R., Law, M. E., et al. (2005). Studies of a fuel-rich propane flame with photoionization mass spectrometry. Proceedings of the Combustion Institute, 30(1), 1681–1688.CrossRefGoogle Scholar
  20. 20.
    Reaction Design. (2009). CHEMKIN-PRO 15092. San Diego: Reaction Design.Google Scholar
  21. 21.
    Benson, S. W., & Buss, J. H. (1958). Additivity rules for the estimation of molecular properties: Thermodynamic properties. The Journal of Chemical Physics, 29(3), 546–572.CrossRefGoogle Scholar
  22. 22.
    Benson, S. W. (1976). Thermochemical kinetics. New Jersey: Wiley.Google Scholar
  23. 23.
    Cohen, N. (1996). Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25(8), 1411–1481.CrossRefGoogle Scholar
  24. 24.
    Van Speybroeck, V., Gani, R., & Meier, R. J. (2010). The calculation of thermodynamic properties of molecules. Chemical Society Reviews, 39(5), 1764–1779.CrossRefGoogle Scholar
  25. 25.
    Frisch, M. J., Trucks, G. W., Schlegel, H. B., & Scuseria, G. E. (2009). Gaussian 09, Revision B.01. Wallingford, CT: Gaussian Inc.Google Scholar
  26. 26.
    Linstrom, P. J., & Mallard, W. G. (2005). NIST chemistry webbook. National Institute of Standard and Technology, Number 69, Gaithersburg, MD. http://webbook.nist.gov/.
  27. 27.
    Wheeler, S. E., Houk, K. N., Schleyer, P. V. R., & Allen, W. D. (2009). A hierarchy of homodesmotic reactions for thermochemistry. Journal of the American Chemical Society, 131(7), 2547–2560.CrossRefGoogle Scholar
  28. 28.
    Mokrushin, V., Bedanov, V., Tsang, W., Zachariah, M., & Knyazev, V. (2009). ChemRate, Version 1.5.8. Gaithersburg, MD: National Institute of Standard and Technology.Google Scholar
  29. 29.
    Robertson, S. H., Glowacki, D. R., Liang, C.-H., Morley, C., Shannon, R., Blitz, M., et al. (2008–2013). MESMER (Master Equation Solver for Multi-Energy Well Reactions), an object oriented C ++ program implementing master equation methods for gas phase reactions with arbitrary multiple wells. http://sourceforge.net/projects/mesmer.
  30. 30.
    Klippenstein, S. J., Wagner, A. F., Dunbar, R. C., Wardlaw, D. M., & Robertson, S. H. (1999). Variflex. 1999, Version 1.0. Lemont: Argonne National Laboratory.Google Scholar
  31. 31.
    Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E. et al. (2000). CHEMKIN Collection, Release 3.6. Reaction Design Inc., San Diego, CA.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations