Experimental and Kinetic Modeling Study of Cyclohexane and Its Mono-alkylated Derivatives Combustion pp 1-22 | Cite as
Introduction
Chapter
First Online:
- 274 Downloads
Abstract
Energy—its safety and availability—determines the future of human society. Although there continues to be significant development in renewable energies, more than 85% of current energy still originates with combustion of fossil fuels, guaranteeing a prosperous global economy and quality of life.
References
- 1.Ding, Y. Yu, H., Wan, Z., & Wang, P. (2011). China statistical yearbook-2011. China Statistics Press.Google Scholar
- 2.Yao, M., Zheng, Z., & Liu, H. (2009). Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 35(5), 398–437.Google Scholar
- 3.International energy outlook (2010). U.S. Energy information administration: Washington, DC 20585.Google Scholar
- 4.Development strategy on engineering thermal physics and energy utilization (2011–2020). Science Press.Google Scholar
- 5.Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core. Antarctica Nature, 399(6735), 429–436.Google Scholar
- 6.Basic research needs for clean and efficient combusiton of 21th century transportation fuels. http://www.sc.doe.gov/bes/reports/files/CTF_rpt.pdf.
- 7.Stanglmaier, R. H. & Roberts, C. E. (1999). Homogeneous charge compression ignition (HCCI): Benefits, compromises, and future engine applications. Society of Automotive Engineers, SAE-1999-01-3682.Google Scholar
- 8.Elkelawy, M., Zhang, Y., Hagar, A. E., & Yu, Y. (2008). Challenging and future of homogeous charge compression ignition engines: An advanced and novel concepts review. Journal of Power and Energy Systems, 2, 1108–1119.Google Scholar
- 9.Kohse-Höinghaus, K., & Jeffries, J. B. (2002). Applied combustion diagnostics, In K. C. Smyth & D. R. Crosley (Eds.), New York: Taylor & Francis.Google Scholar
- 10.Melton, L. A. (1984). Soot diagnostics based on laser heating. Applied Optics, 23(13), 2201–2208.Google Scholar
- 11.McIlroy, A. (1998). Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy. Chemical Physics Letters, 296(1–2), 151–158.Google Scholar
- 12.Akhter, M. S., Chughtai, A. R., & Smith, D. M. (1985). The structure of hexane soot I: Spectroscopic studies. Applied Spectroscopy, 39(1), 143–153.Google Scholar
- 13.Oltmann, H., Reimann, J., & Will, S. (2010). Wide-angle light scattering (WALS) for soot aggregate characterization. Combustion and Flame, 157(3), 516–522.Google Scholar
- 14.Vasu, S. S., Davidson, D. F., Hong, Z., & Hanson, R. K. (2009). Shock tube study of methylcyclohexane ignition over a wide range of pressure and temperature. Energy & Fuels, 23(1), 175–185.Google Scholar
- 15.Davidson, D. F., Hong, Z., Pilla, G. L., Farooq, A., Cook, R. D., & Hanson, R. K. (2010). Multi-species time-history measurements during n-heptane oxidation behind reflected shock waves. Combustion and Flame, 157(10), 1899–1905.Google Scholar
- 16.Lam, K.-Y., Ren, W., Hong, Z., Davidson, D. F., & Hanson, R. K. (2012). Shock tube measurements of 3-pentanone pyrolysis and oxidation. Combustion and Flame, 159(11), 3251–3263.Google Scholar
- 17.Biordi, J. C., Lazzara, C. P., & Papp, J. F. (1974). Molecular-beam mass-spectrometry applied to determining kinetics of reactions in flames. 1. empirical characterization of flame perturbation by molecular-beam sampling probes. Combustion and Flame, 23(1), 73–82.Google Scholar
- 18.Biordi, J. C. (1977). Molecular beam mass spectrometry for studying the fundamental chemistry of flames. Progress in Energy and Combustion Science, 3(3), 151–173.Google Scholar
- 19.Hansen, N., Cool, T. A., Westmoreland, P. R., & Kohse-Höinghaus, K. (2009). Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry. Progress in Energy and Combustion Science, 35(2), 168–191.Google Scholar
- 20.Qi, F. (2013). Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proceedings of the Combustion Institute, 34, 33–63.Google Scholar
- 21.Cord, M., Husson, B., Lizardo Huerta, J. C., Herbinet, O., Glaude, P.-A., Fournet, R., et al. (2012). Study of the low temperature oxidation of propane. The Journal of Physical Chemistry A, 116(50), 12214–12228.Google Scholar
- 22.Serinyel, Z., Herbinet, O., Frottier, O., Dirrenberger, P., Warth, V., Glaude, P. A., et al. (2013). An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combustion and Flame, 160, 2319–2332.Google Scholar
- 23.NIST/EPA/NIH Mass spectral library (NIST 08). NIST.Google Scholar
- 24.Dagaut, P. (2002). On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Physical Chemistry Chemical Physics, 4(11), 2079–2094.Google Scholar
- 25.Dagaut, P., & Cathonnet, M. (2006). The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Progress in Energy and Combustion Science, 32(1), 48–92.Google Scholar
- 26.Battin-Leclerc, F. (2008). Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Progress in Energy and Combustion Science, 34(4), 440–498.Google Scholar
- 27.Matras, D., & Villermaux, J. (1973). Un réacteur continu parfaitement agité par jets gazeux pour l’étude cinétique de réactions chimiques rapides. Chemical Engineering Science, 28(1), 129–137.Google Scholar
- 28.Battin-Leclerc, F., Blurock, E., Bounaceur, R., Fournet, R., Glaude, P. A., Herbinet, O., et al. (2011). Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models. Chemical Society Reviews, 40(9), 4762–4782.Google Scholar
- 29.Battin-Leclerc, F., Herbinet, O., Glaude, P. A., Fournet, R., Zhou, Z., Deng, L., et al. (2010). Experimental confirmation of the low-temperature oxidation scheme of alkanes. Angewandte Chemie International Edition, 49(18), 3169–3172.Google Scholar
- 30.Porter, R., Glaude, P.-A., Buda, F., & Battin-Leclerc, F. (2008). A tentative modeling study of the effect of wall reactions on oxidation phenomena. Energy & Fuels, 22(6), 3736–3743.Google Scholar
- 31.Herbinet, O., Battin-Leclerc, F., Bax, S., Le Gall, H., Glaude, P. A., Fournet, R., et al. (2011). Detailed product analysis during the low temperature oxidation of n-butane. Physical Chemistry Chemical Physics, 13(1), 296–308.Google Scholar
- 32.Herbinet, O., & Dayma, G. (2013). Jet-Stirred reactors. In F. Battin-Leclerc, J. M. Simmie & E. Blurock (Eds.), Cleaner combustion: Developing detailed chemical kinetic models (pp. 183–210). Springer London: London.Google Scholar
- 33.Zeppieri, S., Brezinsky, K., & Glassman, I. (1997). Pyrolysis studies of methylcyclohexane and oxidation studies of methylcyclohexane and methylcyclohexane/toluene blends. Combustion and Flame, 108(3), 266–286.Google Scholar
- 34.Curran, H. J., Pitz, W. J., Westbrook, C. K., Callahan, G. V., & Dryer, F. L. (1998). Oxidation of automotive primary reference fuels at elevated pressures. Symposium (International) on Combustion, 27(1), 379–387.Google Scholar
- 35.Mueller, M. A., Kim, T. J., Yetter, R. A., & Dryer, F. L. (1999). Flow reactor studies and kinetic modeling of the H2/O2 reaction. International Journal of Chemical Kinetics, 31(2), 113–125.Google Scholar
- 36.Curran, H. J., Fischer, S. L., & Dryer, F. L. (2000). The reaction kinetics of dimethyl ether. II: Low-temperature oxidation in flow reactors. International Journal of Chemical Kinetics, 32(12), 741–759.Google Scholar
- 37.Li, J., Zhao, Z., Kazakov, A., & Dryer, F. L. (2004). An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics, 36(10), 566–575.Google Scholar
- 38.Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F. L., & Scire, J. J. (2007). A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. International Journal of Chemical Kinetics, 39(3), 109–136.Google Scholar
- 39.Zhao, Z., Chaos, M., Kazakov, A., & Dryer, F. L. (2008). Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. International Journal of Chemical Kinetics, 40, 1–18.Google Scholar
- 40.Tsang, W. (1978). Thermal stability of cyclohexane and 1-hexene. International Journal of Chemical Kinetics, 10, 1119–1138.Google Scholar
- 41.Tsang, W., Walker, J. A., & Manion, J. A. (1998). Single-pulse shock-tube study on the decomposition of 1-pentyl radicals. Symposium (International) on Combustion, 27(1), 135–142.Google Scholar
- 42.Tsang, W. (2005). Mechanism and rate constants for the decomposition of 1-pentenyl radicals. The Journal of Physical Chemistry A, 110(27), 8501–8509.Google Scholar
- 43.Tsang, W., Walker, J. A., & Manion, J. A. (2007). The decomposition of normal hexyl radicals. Proceedings of the Combustion Institute, 31(1), 141–148.Google Scholar
- 44.McGivern, W. S., Awan, I. A., Tsang, W., & Manion, J. A. (2008). Isomerization and decomposition reactions in the pyrolysis of branched hydrocarbons: 4-methyl-1-pentyl radical. The Journal of Physical Chemistry A, 112(30), 6908–6917.Google Scholar
- 45.Tsang, W., McGivern, W. S., & Manion, J. A. (2009). Multichannel decomposition and isomerization of octyl radicals. Proceedings of the Combustion Institute, 32(1), 131–138.Google Scholar
- 46.Manion, J. A., & Awan, I. A. (2013). The decomposition of 2-pentyl and 3-pentyl radicals. Proceedings of the Combustion Institute, 34(1), 537–545.Google Scholar
- 47.Gudiyella, S., & Brezinsky, K. (2012). High pressure study of n-propylbenzene oxidation. Combustion and Flame, 159, 940–958.Google Scholar
- 48.Gudiyella, S., & Brezinsky, K. (2013). The high pressure study of n-propylbenzene pyrolysis. Proceedings of the Combustion Institute, 34(1), 1767–1774.Google Scholar
- 49.Malewicki, T., & Brezinsky, K. (2013). Experimental and modeling study on the pyrolysis and oxidation of n-decane and n-dodecane. Proceedings of the Combustion Institute, 34(1), 361–368.Google Scholar
- 50.Malewicki, T., Comandini, A., & Brezinsky, K. (2013). Experimental and modeling study on the pyrolysis and oxidation of iso-octane. Proceedings of the Combustion Institute, 34(1), 353–360.Google Scholar
- 51.Malewicki, T., Gudiyella, S., & Brezinsky, K. (2013). Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene surrogate fuel. Combustion and Flame, 160(1), 17–30.Google Scholar
- 52.Pousse, E., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2009). A lean methane premixed laminar flame doped with components of diesel fuel: I. n-Butylbenzene. Combustion and Flame, 156(5), 954–974.Google Scholar
- 53.Pousse, E., Porter, R., Warth, V., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2010). Lean methane premixed laminar flames doped by components of diesel fuel II: n-Propylcyclohexane. Combustion and Flame, 157(1), 75–90.Google Scholar
- 54.Pousse, E., Tian, Z. Y., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2010). A lean methane premixed laminar flame doped with components of diesel fuel part III: Indane and comparison between n-butylbenzene, n-propylcyclohexane and indane. Combustion and Flame, 157(7), 1236–1260.Google Scholar
- 55.Sarathy, S. M., Yeung, C., Westbrook, C. K., Pitz, W. J., Mehl, M., & Thomson, M. J. (2011). An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame. Combustion and Flame, 158(7), 1277–1287.Google Scholar
- 56.Dayma, G., Sarathy, S. M., Togbé, C., Yeung, C., Thomson, M. J., & Dagaut, P. (2011). Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor. Proceedings of the Combustion Institute, 33(1), 1037–1043.Google Scholar
- 57.Yeung, C., & Thomson, M. J. (2013). Experimental and kinetic modeling study of 1-hexanol combustion in an opposed-flow diffusion flame. Proceedings of the Combustion Institute, 34(1), 795–802.Google Scholar
- 58.Mani Sarathy, S., Niemann, U., Yeung, C., Gehmlich, R., Westbrook, C. K., Plomer, M., et al. (2013). A counterflow diffusion flame study of branched octane isomers. Proceedings of the Combustion Institute, 34(1), 1015–1023.Google Scholar
- 59.Cool, T. A., Nakajima, K., Mostefaoui, T. A., Qi, F., McIlroy, A., Westmoreland, P. R., et al. (2003). Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. Journal of Chemical Physics, 119(16), 8356–8365.Google Scholar
- 60.Cool, T. A., McIlroy, A., Qi, F., Westmoreland, P. R., Poisson, L., Peterka, D. S., et al. (2005). Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source. Review of Scientific Instruments, 76(9), 094102.Google Scholar
- 61.Zhang, T., Wang, J., Yuan, T., Hong, X., Zhang, L., & Qi, F. (2008). Pyrolysis of Methyl tert-Butyl Ether (MTBE). 1. experimental study with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization. Journal of Physical Chemistry A, 112(42), 10487–10494.Google Scholar
- 62.Zhang, T., Zhang, L., Hong, X., Zhang, K., Qi, F., Law, C. K., et al. (2009). An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry. Combustion and Flame, 156(11), 2071–2083.Google Scholar
- 63.Zhang, Y., Cai, J., Zhao, L. O., Yang, J., Jin, H., Cheng, Z., Li, Y., Zhang, L., & Qi, F. (2012). An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combustion and Flame, 159, 905–917.Google Scholar
- 64.Cai, J., Zhang, L., Zhang, F., Wang, Z., Cheng, Z., & Qi, F. (2012). Experimental and kinetic modeling study of n-butanol pyrolysis and combustion. Energy & Fuels, 26, 5550–5568.Google Scholar
- 65.Cai, J., Zhang, L., Yang, J., Li, Y., & Qi, F. (2012). Experimental and kinetic modeling study of tert-butanol combustion at low pressure. Energy, 43, 94–102.Google Scholar
- 66.Cai, J., Yuan, W., Ye, L., Cheng, Z., Wang, Y., Zhang, L., et al. (2013). Experimental and kinetic modeling study of 2-butanol pyrolysis and combustion. Combustion and Flame, 160(10), 1939–1957.Google Scholar
- 67.Li, Y., Zhang, L., Wang, Z., Ye, L., Cai, J., Cheng, Z., et al. (2013). Experimental and kinetic modeling study of tetralin pyrolysis at low pressure. Proceedings of the Combustion Institute, 34(1), 1739–1748.Google Scholar
- 68.Lucassen, A., Wang, Z., Zhang, L., Zhang, F., Yuan, W., Wang, Y., et al. (2013). An experimental and theoretical study of pyrrolidine pyrolysis at low pressure. Proceedings of the Combustion Institute, 34(1), 641–648.Google Scholar
- 69.Wang, Z., Cheng, Z., Yuan, W., Cai, J., Zhang, L., Zhang, F., et al. (2012). An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combustion and Flame, 159(7), 2243–2253.Google Scholar
- 70.Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., et al. (2014). Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 161, 84–100.Google Scholar
- 71.Herbinet, O., Husson, B., Serinyel, Z., Cord, M., Warth, V., Fournet, R., et al. (2012). Experimental and modeling investigation of the low-temperature oxidation of n-heptane. Combustion and Flame, 159(12), 3455–3471.Google Scholar
- 72.Battin-Leclerc, F., Rodriguez, A., Husson, B., Herbinet, O., Glaude, P. A., Wang, Z., et al. (2014). Products from the oxidation of linear isomers of hexene. The Journal of Physical Chemistry A, 118(4), 673–683.Google Scholar
- 73.Cuoci, A., Frassoldati, A., Faravelli, T., Jin, H., Wang, Y., Zhang, K., et al. (2013). Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames. Proceedings of the Combustion Institute, 34(1), 1811–1818.Google Scholar
- 74.Jin, H., Wang, Y., Zhang, K., Guo, H., & Qi, F. (2013). An experimental study on the formation of polycyclic aromatic hydrocarbons in laminar coflow non-premixed methane/air flames doped with four isomeric butanols. Proceedings of the Combustion Institute, 34(1), 779–786.Google Scholar
- 75.Jin, H., Cuoci, A., Frassoldati, A., Faravelli, T., Wang, Y., Li, Y., et al. (2014). Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol. Combustion and Flame, 161(3), 657–670.Google Scholar
- 76.Zhou, Z., Wang, Y., Tang, X., Wu, W., & Qi, F. (2013). A new apparatus for study of pressure-dependent laminar premixed flames with vacuum ultraviolet photoionization mass spectrometry. Review of Scientific Instruments, 84(1), 014101.Google Scholar
- 77.Skeen, S. A., Yang, B., Michelsen, H. A., Miller, J. A., Violi, A., & Hansen, N. (2013). Studies of laminar opposed-flow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry. Proceedings of the Combustion Institute, 34(1), 1067–1075.Google Scholar
- 78.Skeen, S. A., Michelsen, H. A., Wilson, K. R., Popolan, D. M., Violi, A., & Hansen, N. (2013). Near-threshold photoionization mass spectra of combustion-generated high-molecular-weight soot precursors. Journal of Aerosol Science, 58, 86–102.Google Scholar
- 79.Dubreuil, A., Foucher, F., Mounaı¨m-Rousselle, C., Dayma, G., & Dagaut, P. (2007). HCCI combustion: Effect of NO in EGR. Proceedings of the Combustion Institute, 31(2), 2879–2886.Google Scholar
- 80.Bahrini, C., Morajkar, P., Schoemaecker, C., Frottier, O., Herbinet, O., Glaude, P. A., et al. (2013). Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements. Physical Chemistry Chemical Physics, 15(45), 19686–19698.Google Scholar
- 81.Bahrini, C., Herbinet, O., Glaude, P.-A., Schoemaecker, C., Fittschen, C., & Battin-Leclerc, F. (2012). Quantification of hydrogen peroxide during the low-temperature oxidation of alkanes. Journal of the American Chemical Society, 134(29), 11944–11947.Google Scholar
- 82.Blocquet, M., Schoemaecker, C., Amedro, D., Herbinet, O., Battin-Leclerc, F., & Fittschen, C. (2013). Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique. Proceedings of the National Academy of Sciences, 110, 20014–20017.Google Scholar
- 83.Brumfield, B., Sun, W., Ju, Y., & Wysocki, G. (2013). Direct In situ quantification of HO2 from a flow reactor. The Journal of Physical Chemistry Letters, 4(6), 872–876.Google Scholar
- 84.Brumfield, B., Sun, W., Wang, Y., Ju, Y., & Wysocki, G. (2014). Dual modulation Faraday rotation spectroscopy of HO2 in a flow reactor. Optics Letters, 39(7), 1783–1786.Google Scholar
- 85.Edwards, T., & Maurice, L. Q. (2001). Surrogate mixtures to represent complex aviation and rocket fuels. Journal of Propulsion and Power, 17(2), 461–466.Google Scholar
- 86.Westbrook, C. K., & Smith, P. J. (2006). Basic research needs for clean and efficient combustion of 21st century transportation fuels. Livermore: Office of Science, U.S. Department of Energy.Google Scholar
- 87.Davis, A. C., Tangprasertchai, N., & Francisco, J. S. (2012). Hydrogen Migrations in Alkylcycloalkyl Radicals: Implications for Chain-Branching Reactions in Fuels. Chemistry—A European Journal, 18(36), 11296–11305.Google Scholar
- 88.Hadaller, O. J., & Johnson, J. M. (2006). World fuel sampling program. CRC Aviation Fuel, Lubricant & Equipment research committee of the coordinating research council, Inc.Google Scholar
- 89.Edwards, T., Shafer, L., Striebich, R., & Gomach, J. (2006). Chemical class composition of commercial jet fuels and other specialty kerosene fuels. In 14th AIAA/AHI space planes and hypersonic systems and technologies conference. American Institute of Aeronautics and Astronautics.Google Scholar
- 90.Farrell, J. T., Cernansky, N. P., Dryer, F. L., Law, C. K., Friend, D. G., Hergart, C. A., et al. (2007). Development of an experimental database and kinetic models for surrogate diesel fuels. Society of Automotive Engineers, SAE Paper 2007-01-0201.Google Scholar
- 91.Pitz, W. J., Cernansky, N. P., Dryer, F. L., Egolfopoulos, F. N., Farrell, J. T., Friend, D.G., et al. (2007). Development of an experimental database and chemical kinetic models for surrogate gasoline fuels. Society of Automotive Engineers, SAE Paper 2007-01-0175.Google Scholar
- 92.Colket, M., Edwards, T., Williams, S., Cernansky, N., Miller, D.L., Egolfopoulos, F., et al. (2007). Development of an experimental database and kinetic models for surrogate jet fuels. in 45th AIAA Aerospace Sciences Meeting and Exhibit Proceedings. Reno, NV.Google Scholar
- 93.Pitz, W. J., & Mueller, C. J. (2011). Recent progress in the development of diesel surrogate fuels. Progress in Energy and Combustion Science, 37(3), 330–350.Google Scholar
- 94.Curran, H. J., Gaffuri, P., Pitz, W. J., & Westbrook, C. K. (1998). A comprehensive modeling study of n-heptane oxidation. Combustion and Flame, 114(1–2), 149–177.Google Scholar
- 95.Sheen, D. A., & Wang, H. (2011). Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane. Combustion and Flame, 158(4), 645–656.Google Scholar
- 96.Curran, H. J., Gaffuri, P., Pitz, W. J., & Westbrook, C. K. (2002). A comprehensive modeling study of iso-octane oxidation. Combustion and Flame, 129(3), 253–280.Google Scholar
- 97.Agosta, A., Cernansky, N. P., Miller, D. L., Faravelli, T., & Ranzi, E. (2004). Reference components of jet fuels: Kinetic modeling and experimental results. Experimental Thermal and Fluid Science, 28(7), 701–708.Google Scholar
- 98.Violi, A., Yan, S., Eddings, E. G., Sarofim, A. F., Granata, S., Faravelli, T., et al. (2002). Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combustion Science and Technology, 174(11–2), 399–417.Google Scholar
- 99.Grumman, N. (2003). Diesel fuel oils. Report NGMS-232 PPS, January 2004.Google Scholar
- 100.Silke, E. J., Pitz, W. J., Westbrook, C. K., & Ribaucour, M. (2007). Detailed chemical kinetic modeling of cyclohexane oxidation. Journal of Physical Chemistry A, 111(19), 3761–3775.Google Scholar
- 101.Shafer, L., Striebich, R., Gomach, J., & Edwards, T. (2006, November) Chemical class composition of commercial jet fuels and other specialty kerosene fuels. AIAA Paper 2006–7972.Google Scholar
- 102.Fan, X., Yu, G. (2006). Analysis of thermophysical properties of Daqing RP-3 aviation kerosene. Journal of Propulsion Technology, 27(2): 187–192.Google Scholar
- 103.El Bakali, A., Braun-Unkhoff, M., Dagaut, P., Frank, P., & Cathonnet, M. (2000). Detailed kinetic reaction mechanism for cyclohexane oxidation at pressure up to ten atmospheres. Proceedings of the Combustion Institute, 28, 1631–1638.Google Scholar
- 104.Lemaire, O., Ribaucour, M., Carlier, M., & Minetti, R. (2001). The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene. Combustion and Flame, 127(1–2), 1971–1980.Google Scholar
- 105.Law, M. E., Westmoreland, P. R., Cool, T. A., Wang, J., Hansen, N., Taatjes, C. A., et al. (2007). Benzene precursors and formation routes in a stoichiometric cyclohexane flame. Proceedings of the Combustion Institute, 31, 565–573.Google Scholar
- 106.Sirjean, B., Buda, F., Hakka, H., Glaude, P. A., Fournet, R., Warth, V., et al. (2007). The autoignition of cyclopentane and cyclohexane in a shock tube. Proceedings of the Combustion Institute, 31, 277–284.Google Scholar
- 107.Daley, S. M., Berkowitz, A. M., & Oehlschlaeger, M. A. (2008). A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures. International Journal of Chemical Kinetics, 40(10), 624–634.Google Scholar
- 108.Yang, Y., & Boehman, A. L. (2009). Experimental study of cyclohexane and methylcyclohexane oxidation at low to intermediate temperature in a motored engine. Proceedings of the Combustion Institute, 32, 419–426.Google Scholar
- 109.Ciajolo, A., Tregrossi, A., Mallardo, M., Faravelli, T., & Ranzi, E. (2009). Experimental and kinetic modeling study of sooting atmospheric-pressure cyclohexane flame. Proceedings of the Combustion Institute, 32, 585–591.Google Scholar
- 110.Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.Google Scholar
- 111.Vranckx, S., Lee, C., Chakravarty, H. K., & Fernandes, R. X. (2013). A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures. Proceedings of the Combustion Institute, 34(1), 377–384.Google Scholar
- 112.Orme, J. P., Curran, H. J., & Simmie, J. M. (2006). Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. Journal of Physical Chemistry A, 110(1), 114–131.Google Scholar
- 113.Pitz, W. J., Naik, C. V., Mhaoldúin, T. N., Westbrook, C. K., Curran, H. J., Orme, J. P., et al. (2007). Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proceedings of the Combustion Institute, 31, 267–275.Google Scholar
- 114.Mittal, G., & Sung, C. J. (2009). Autoignition of methylcyclohexane at elevated pressures. Combustion and Flame, 156(9), 1852–1855.Google Scholar
- 115.Vanderover, J., & Oehlschlaeger, M. A. (2009). Ignition time measurements for methylcylcohexane- and ethylcyclohexane-air mixtures at elevated pressures. International Journal of Chemical Kinetics, 41(2), 82–91.Google Scholar
- 116.Skeen, S. A., Yang, B., Jasper, A. W., Pitz, W. J., & Hansen, N. (2011). Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model. Energy & Fuels, 25, 5611–5625.Google Scholar
- 117.Husson, B., Herbinet, O., Glaude, P. A., Ahmed, S. S., & Battin-Leclerc, F. (2012). Detailed product analysis during low- and intermediate-temperature oxidation of ethylcyclohexane. Journal of Physical Chemistry A, 116(21), 5100–5111.Google Scholar
- 118.Ristori, A., Dagaut, P., El Bakali, A., & Cathonnet, M. (2001). The oxidation of n-propylcyclohexane: Experimental results and kinetic modeling. Combustion Science and Technology, 165, 197–228.Google Scholar
- 119.Crochet, M., Minetti, R., Ribaucour, M., & Vanhove, G. (2010). A detailed experimental study of n-propylcyclohexane autoignition in lean conditions. Combustion and Flame, 157(11), 2078–2085.Google Scholar
- 120.Ji, C., Dames, E., Sirjean, B., Wang, H., & Egolfopoulos, F. N. (2011). An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames. Proceedings of the Combustion Institute, 33, 971–978.Google Scholar
- 121.Natelson, R. H., Kurman, M. S., Cernansky, N. P., & Miller, D. L. (2011). Low temperature oxidation of n-butylcyclohexane. Combustion and Flame, 158(12), 2325–2337.Google Scholar
- 122.Hong, Z., Lam, K.-Y., Davidson, D. F., & Hanson, R. K. (2011). A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures. Combustion and Flame, 158(8), 1456–1468.Google Scholar
- 123.Brown, T. C., King, K. D., & Nguyent, T. T. (1986). Kinetics of primary processes in the pyrolysis of cyclopentanes and cyclohexanes. Journal of Physical Chemistry, 90, 419–424.Google Scholar
- 124.Aribike, D. S., Susu, A. A., & Ogunye, A. F. (1981). Mechanistic and mathematical modeling of the thermal decompostion of cyclohexane. Thermochimica Acta, 51(2–3), 113–127.Google Scholar
- 125.Voisin, D., Marchal, A., Reuillon, M., Boettner, J. C., & Cathonnet, M. (1998). Experimental and kinetic modeling study of cyclohexane oxidation in a JSR at high pressure. Combustion Science and Technology, 138(1–6), 137–158.Google Scholar
- 126.Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.Google Scholar
- 127.Brown, T. C., & King, K. D. (1989). Very low-pressure pyrolysis (VLPP) of methyl- and ethynyl-cyclopentanes and cyclohexanes. International Journal of Chemical Kinetics, 21(4), 251–266.Google Scholar
- 128.Billaud, F., Chaverot, P., Berthelin, M., & Freund, E. (1988). Thermal decomposition of cyclohexane at approximately 810 ℃. Industrial and Engineering Chemistry Research, 27, 759–764.Google Scholar
- 129.Bennett, P. J., Gregory, D., & Jackson, R. A. (1996). Mechanistic studies on the combustion of isotopically labelled cyclohexanes within a single cylinder internal combustion engine. Combustion Science and Technology, 115(1–3), 83–103.Google Scholar
- 130.McEnally, C. S., & Pfefferle, L. D. (2004). Experimental study of fuel decomposition and hydrocarbon growth processes for cyclohexane and related compounds in nonpremixed flames. Combustion and Flame, 136(1–2), 155–167.Google Scholar
- 131.Li, W., Law, M. E., Westmoreland, P. R., Kasper, T., Hansen, N., & Kohse-Höinghaus, K. (2011). Multiple benzene-formation paths in a fuel-rich cyclohexane flame. Combustion and Flame, 158(11), 2077–2089.Google Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2018