Skip to main content

Hodgkin–Huxley Model Revisited to Incorporate the Physical Parameters Affected by Anesthesia

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 583))

Abstract

Hodgkin–Huxley model describes the action potential phenomenon on the basis of electrochemical properties but does not characterize the anesthetic effects. In this paper, we have proposed a model which reframes Hodgkin–Huxley model to be able to identify the parameters affected by anesthesia. The model comprises of set of partial differential equations that describe how the viscosity of fluid moving along the axon impacts the propagation of action potential. It is observed that with the increase in viscosity of the fluid, there is a reduction in the conduction velocity. The viscosity of the fluid moving along the axon has also been characterized with respect to the temperature, the physical parameter considered in the Hodgkin-Huxley model. The model has been solved using finite difference method and implemented using C++ syntax code in an iterative manner. The results obtained are consistent with the freezing point depression theory for the explanation of anesthesia. The model acts as a framework for drug therapists inducing anesthesia to analyze the target parameters responsible for blocking of action potential propagation and hence for possible therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(c_{m}\) :

Membrane capacitance per unit area of membrane

\(D_{Na}\) :

Diffusivity of sodium ions in fluid

\(D_{K}\) :

Diffusivity of potassium ions in fluid

\(D_{L}\) :

Diffusivity of chlorine ions in fluid

\(F\) :

Faraday’s constant

\(\bar{g}_{K}\) :

Conductance of potassium ions per unit area of the membrane

\(\bar{g}_{L}\) :

Conductance of leakage current per unit area of membrane

\(\bar{g}_{Na}\) :

Conductance of sodium ions per unit area of the membrane

\(K_{B}\) :

Boltzman Constant

\(M_{Na}\) :

Molar mass of sodium ions

\(M_{K}\) :

Molar mass of potassium ions

\(M_{L}\) :

Molar mass of chlorine ions

\(r\) :

Axon radius

\(rad_{i}\) :

Radius of different ions i

\(R_{a}\) :

Resistance per unit axial length

\(\rho\) :

Density

\(R_{u}\) :

Universal gas constant

\(S\) :

Source term

\(T\) :

Temperature in kelvin

\(v_{F}\) :

Viscosity of fluid inside the axon

\(v_{W}\) :

Viscosity of water

\(V\) :

Membrane voltage

\(V_{Na}\) :

Equilibrium potential of sodium ions

\(V_{K}\) :

Equilibrium potential of potassium ions

\(V_{L}\) :

Equilibrium potential of chlorine ions

\({\dot{w}_{Na}}^{{{\prime \prime \prime }}}\) :

Rate of addition of mass of sodium ions per unit volume

\({\dot{w}_{K}}^{{{\prime \prime \prime }}}\) :

Rate of addition of mass of potassium ions per unit volume

\({\dot{w}_{L}}^{{{\prime \prime \prime }}}\)::

Rate of addition of mass of chlorine per unit volume

\(Y_{Na}\) :

Mass fraction of sodium ions

\(Y_{K}\) :

Mass fraction of potassium ions

\(Y_{L}\) :

Mass fraction of chlorine ions

\(\bar{g}_{Na}\) :

\(1200\,S/m^{2}\)

\(\bar{g}_{K}\) :

\(360\,S/m^{2}\)

\(\bar{g}_{L}\) :

\(3\,S/m^{2}\)

\(V_{Na}\) :

\(0.050\,V\)

\(V_{K}\) :

\(- 0.077\,V\)

\(V_{Cl}\) :

\(- 0.054\,V\)

\(c_{m}\) :

\(0.01F/m^{2}\)

\(R_{a}\) :

\(resistivity/\varPi r^{2} \,\varOmega /m\)

\(resistivity\) :

\(0.354\,\varOmega - m\)

\(rad_{Na}\) :

\(0.102*10^{ - 9}\) meters

\(rad_{K}\) :

\(0.138*10^{ - 9}\) meters

\(rad_{Cl}\) :

\(0.181*10^{ - 9}\) meters

References

  1. Gerstner, W., Kistler, W.M.: Spiking Neuron Models Single Neurons, Populations Plasticity. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  2. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  3. Hille, B.: Ionic Channels of Excitable Membranes. Sinauer (1992)

    Google Scholar 

  4. Beilby, M.J.: Action potentials in Charophytes. Int. Rev. Cytol. 257, 4382 (2007)

    Google Scholar 

  5. Kassahun, B.A.T., Murashov, A.K., Bier, M.: Thermodynamic mechanism behind an action potential and behind anesthesia. Biophys. Rev. Lett. 5(1), 3541 (2010)

    Article  Google Scholar 

  6. Shneider, M.N., Pekker, M.: Initiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields. Phys. Rev. E 89, 052713 (2014)

    Article  Google Scholar 

  7. Overton, C.E.: Studies of Narcosis (R. L. Lipnick, trans.). Springer, New York (1991)

    Google Scholar 

  8. Scholz, A.: Mechanism of (local) anaesthetics on voltagegated sodium and other ion channels. Br. J. Anaesth. 89, 52–61 (2002)

    Article  Google Scholar 

  9. Yamakura, T., Bertaccini, E., Trudell, J.R., Harris, R.A.: Anesthetics and ion channels: Molecular models and sites of action. Annu. Rev. Pharmacol. Toxicol. 41, 23–51 (2001)

    Article  Google Scholar 

  10. Krasowski, M.D., Harrison, N.L.: General anaesthetic actions on ligand gated ion channels. Cell. Mol. Life Sci. 55(1), 278–303 (1999)

    Google Scholar 

  11. Postea, O., Biel, M.: Exploring HCN channels as novel drug targets. Nat. Rev. Drug Discov. 10(90), 3–14 (2011)

    Google Scholar 

  12. Appali, R., Rienen, U.V., Heimbur, T.: A comparison of the Hodgkin-Huxley model and the soliton theory for the action potential in nerves. In: Iglic, A. (ed.) Adv. Planar Lipid Bilayers Liposomes. vol. 16, pp. 275–299, Academic Press (2012)

    Google Scholar 

  13. Barz, H., Schreiber, A., Barz, U.: Impulses and pressure waves cause excitement and conduction in the nervous system. Med. Hypotheses 81(5), 768–772 (2013)

    Article  Google Scholar 

  14. Hardy, A.El., Machta, B.B.: Mechanical surface waves accompany action potential propagation. Nat. Commun. 6, 6697 (2015)

    Google Scholar 

  15. Heimburg, T.: Thermal Biophysics of Membranes. Wiley (2007)

    Google Scholar 

  16. Graesbll, K., Sasse-Middelhoff, H., Heimburg, T.: The thermodynamics of general and local anesthesia. Biophys. J. 106, 2143–2156 (2014)

    Google Scholar 

  17. Hodgkin, A.L., Huxley, A.F.: Resting and action potentials in single nerve fibres. J. Physiol. 104, 176–195 (1945)

    Article  Google Scholar 

  18. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurements of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952)

    Article  Google Scholar 

  19. Roselli, R.J., Diller, K.R.: Biotransport: Principles and Applications. Springer (2011)

    Google Scholar 

  20. Bradley, W.G., William, M.H.: Axoplasmic Flow in Axonal Neuropathies. Brain 96, 235–246 (1973)

    Article  Google Scholar 

  21. Zwillinger, D.: Handbook of Differential Equations. Academic Press, Boston (1977)

    MATH  Google Scholar 

  22. Landau, L.D., Lifschitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford, England (1987)

    Google Scholar 

  23. Cengel, Y.A., Cimbala, J.M.: Fluid Mechanics (Fundamentals and Applications). (McGraw Hill Education (India) Private Limited (2010)

    Google Scholar 

  24. Bhatia, S., Singh, P., Sharma, P.: Hodgkin–Huxley model based on ionic transport in axoplasmic fluid. J Integr Neurosci. 16(4),  401–417 (2017)

    Google Scholar 

  25. Roquemore, W.M., Katta, V.R.: Role of flow visualization in the development of UNICORN. J. Visual. 2(3–4), 257–272 (2000)

    Article  Google Scholar 

  26. Salmon, E.D., Saxton, W.M., Leslie, R.J., Karow, M.L., McIntosh, J.R.: Diffusion Coefficient of Fluorescein-labeled Tubulin in the Cytoplasm of Embryonic cells of a sea Urchin: video image analysis of fluorescence redistribution after photobleaching. J. Cell Biology 99, 2157–2164 (1984)

    Article  Google Scholar 

  27. Keochlin, B.A.: On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern. J. Biophysic. Biochem. Cytol. 1(6), 511–529 (1955)

    Article  Google Scholar 

  28. Gilbert, D.S.: Axoplasm chemical composition in myxicola and solubility properties of its structural proteins. J. Physiol. 253, 303–319 (1975)

    Article  Google Scholar 

  29. Sterratt, D., Graham, B., Gillies, A., Willshaw, D.: Principles of Computational Modelling in Neuroscience. Cambridge University Press (2011)

    Google Scholar 

  30. Moreno, J.D., Lewis, T.J., Clancy, C.E.: Parameterization for in-silico modeling of ion channel interactions with drugs. PLoS ONE 11(3), e0150761 (2016)

    Article  Google Scholar 

  31. Catterall, W.A.: Signalling complexes of voltage gated sodium and calcium channels. Neurosci. Lett. 486, 107–116 (2010)

    Article  Google Scholar 

  32. Rajagopal, S., Sangam, S.R., Singh, S.: Differential regulation of volatile anesthetics on ion Channels. Int. J. Nutr. Pharmacol. Neurol. Dis. 5(4), 128–134 (2015)

    Article  Google Scholar 

  33. Heimburg, T., Jackson, A.D.: Thermodynamics of the nervous impulse. In: Nag, K. (ed.) Structure and Dynamics of Membranous Interfaces, pp. 317–339. Wiley, Hoboken (2008)

    Google Scholar 

  34. Andersen, S.S.L., Jackson, A.D., Heimburg, T.: Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol. 88, 104113 (2009)

    Article  Google Scholar 

  35. Heimburg, T., Jackson, A.D.: On the action potential as a propagating density pulse and the role of anesthetics. Biophys. Rev. Lett. 2, 5778 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Karmeshu, JNU, Delhi and Dr. Pramod Bhatia, The NorthCap University, Gurugram for providing valuable suggestions and guidance in writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhatia, S., Singh, P., Sharma, P. (2018). Hodgkin–Huxley Model Revisited to Incorporate the Physical Parameters Affected by Anesthesia. In: Pant, M., Ray, K., Sharma, T., Rawat, S., Bandyopadhyay, A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 583. Springer, Singapore. https://doi.org/10.1007/978-981-10-5687-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5687-1_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5686-4

  • Online ISBN: 978-981-10-5687-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics