The Rise of Inertial Measurement Units

  • Robert LeMoyneEmail author
  • Timothy Mastroianni
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 27)


An inherent aspect of the development of wearable and wireless systems has been the progressive evolution of the inertial measurement unit. Although when preliminarily recommended for quantifying the aspects of human movement, the inertial measurement was not sufficiently developed for application as a wearable and wireless system. With the steady advance from other industries accelerometers became feasible as wearable applications for monitoring activity status and other biomedical and rehabilitation themed scenarios. Eventually wearable accelerometer systems developed from data logger configurations to devices with local wireless connectivity.


Wireless accelerometer Accelerometer Data logger Activity monitoring Gait quantification 


  1. 1.
    Dobkin BH (2003) The clinical science of neurologic rehabilitation. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Perry J (1992) Gait analysis: normal and pathological function. SlackGoogle Scholar
  3. 3.
    LeMoyne R, Mastroianni T (2015) Use of smartphones and portable media devices for quantifying human movement characteristics of gait, tendon reflex response, and Parkinson’s disease hand tremor. Methods and Protocols, Mobile Health Technologies, 335–358Google Scholar
  4. 4.
    LeMoyne R, Mastroianni T (2017) Wearable and wireless gait analysis platforms: smartphones and portable media devices. Wireless MEMS Networks and Applications, 129–152Google Scholar
  5. 5.
    LeMoyne R, Mastroianni T (2016) Telemedicine perspectives for wearable and wireless applications serving the domain of neurorehabilitation and movement disorder treatment. Telemedicine, 1–10Google Scholar
  6. 6.
    LeMoyne R, Coroian C, Cozza M, Opalinski P, Mastroianni T, Grundfest W (2009) The merits of artificial proprioception, with applications in biofeedback gait rehabilitation concepts and movement disorder characterization. Biomedical Engineering, 165–198Google Scholar
  7. 7.
    LeMoyne R (2016) Testing and evaluation strategies for the powered prosthesis, a global perspective. Advances for Prosthetic Technology: From Historical Perspective to Current Status to Future Application, 37–58Google Scholar
  8. 8.
    Saunders JB, Inman VT, Eberhart HD (1953) The major determinants in normal and pathological gait. J Bone Joint Surg 35A:543–558CrossRefGoogle Scholar
  9. 9.
    Culhane KM, O’connor M, Lyons D, Lyons GM (2005) Accelerometers in rehabilitation medicine for older adults. Age Ageing 34(6):556–560CrossRefGoogle Scholar
  10. 10.
    LeMoyne R, Coroian C, Mastroianni T, Grundfest W (2008) Accelerometers for quantification of gait and movement disorders: a perspective review. J Mech Med Biol 8(02):137–152CrossRefGoogle Scholar
  11. 11.
    LeMoyne R, Coroian C, Mastroianni T, Grundfest W (2009) Wireless accelerometer assessment of gait for quantified disparity of hemiparetic locomotion. J Mech Med Biol 9(03):329–343CrossRefGoogle Scholar
  12. 12.
    LeMoyne R, Coroian C, Mastroianni T (2009) Wireless accelerometer system for quantifying gait. In: ICME International Conference on IEEE, Complex Medical Engineering (CME), pp 1–4Google Scholar
  13. 13.
    LeMoyne R, Mastroianni T, Grundfest W (2013) Wireless accelerometer system for quantifying disparity of hemiplegic gait using the frequency domain. J Mech Med Biol 13(03):1350035CrossRefGoogle Scholar
  14. 14.
    LeMoyne R, Jafari R, Jea D (2005) Fully quantified evaluation of myotatic stretch reflex. In: 35th Society for Neuroscience Annual MeetingGoogle Scholar
  15. 15.
    LeMoyne R, Dabiri F, Jafari R (2008) Quantified deep tendon reflex device, second generation. J Mech Med Biol 8(01):75–85CrossRefGoogle Scholar
  16. 16.
    LeMoyne R, Coroian C, Mastroianni T, Grundfest W (2008) Quantified deep tendon reflex device for response and latency, third generation. J Mech Med Biol 8(04):491–506CrossRefGoogle Scholar
  17. 17.
    LeMoyne R, Mastroianni T, Kale H, Luna J, Stewart J, Elliot S, Bryan F, Coroian C, Grundfest W (2011) Fourth generation wireless reflex quantification system for acquiring tendon reflex response and latency. J Mech Med Biol 11(01):31–54CrossRefGoogle Scholar
  18. 18.
    LeMoyne R, Mastroianni T, Coroian C, Grundfest W (2010) Wireless three dimensional accelerometer reflex quantification device with artificial reflex system. J Mech Med Biol 10(03):401–415CrossRefGoogle Scholar
  19. 19.
    LeMoyne R, Coroian C, Mastroianni T (2009) Wireless accelerometer reflex quantification system characterizing response and latency. In: 31st Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBS), pp 5283–5286Google Scholar
  20. 20.
    LeMoyne RC (2010) Wireless quantified reflex device. Ph.D. Dissertation UCLAGoogle Scholar
  21. 21.
    LeMoyne R, Mastroianni T, Coroian C, Grundfest W (2011) Tendon reflex and strategies for quantification, with novel methods incorporating wireless accelerometer reflex quantification devices, a perspective review. J Mech Med Biol 11(03):471–513CrossRefGoogle Scholar
  22. 22.
    LeMoyne R, Coroian C, Mastroianni T, Grundfest W (2008) Virtual proprioception. J Mech Med Biol 8(03):317–338CrossRefGoogle Scholar
  23. 23.
    LeMoyne R, Coroian C, Mastroianni T, Wu W, Grundfest W, Kaiser W (2008) Virtual proprioception with real-time step detection and processing. In: 30th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBS), pp 4238–4241Google Scholar
  24. 24.
    Patel S, Park H, Bonato P, Chan L, Rodgers M (2012) A review of wearable sensors and systems with application in rehabilitation. J Neuroengineering Rehabil 9(1):21CrossRefGoogle Scholar
  25. 25.
    Brunnekreef JJ, van Uden CJ, van Moorsel S, Kooloos JG (2005) Reliability of videotaped observational gait analysis in patients with orthopedic impairments. BMC Musculoskelet Disord 6(1):17CrossRefGoogle Scholar
  26. 26.
    van den Bogert AJ, Read L, Nigg BM (1996) A method for inverse dynamic analysis using accelerometry. J Biomech 29(7):949–954CrossRefGoogle Scholar
  27. 27.
    Zijlstra W, Bisseling R (2004) Estimation of hip abduction moment based on body fixed sensors. Clin Biomech 19(8):819–827CrossRefGoogle Scholar
  28. 28.
    Mansfield A, Lyons GM (2003) The use of accelerometry to detect heel contact events for use as a sensor in FES assisted walking. Med Eng Phys 25(10):879–885CrossRefGoogle Scholar
  29. 29.
    Moe-Nilssen R, Helbostad JL (2004) Estimation of gait cycle characteristics by trunk accelerometry. J Biomech 37(1):121–126CrossRefGoogle Scholar
  30. 30.
    Zijlstra W, Hof AL (2003) Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2):1–10CrossRefGoogle Scholar
  31. 31.
    Menz HB, Lord SR, Fitzpatrick RC (2003) Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture 18(1):35–46CrossRefGoogle Scholar
  32. 32.
    Moe-Nilssen R (1998) A new method for evaluating motor control in gait under real-life environmental conditions part 2: Gait analysis. Clin Biomech 13(4–5):328–335Google Scholar
  33. 33.
    Auvinet B, Berrut G, Touzard C, Moutel L, Collet N, Chaleil D, Barrey E (2002) Reference data for normal subjects obtained with an accelerometric device. Gait Posture 16(2):124–134Google Scholar
  34. 34.
    Menz HB, Lord SR, Fitzpatrick RC (2003) Age-related differences in walking stability. Age Ageing 32(2):137–142CrossRefGoogle Scholar
  35. 35.
    Kavanagh JJ, Barrett RS, Morrison S (2004) Upper body accelerations during walking in healthy young and elderly men. Gait Posture 20(3):291–298CrossRefGoogle Scholar
  36. 36.
    Aminian K, Robert P, Buchser EE, Rutschmann B, Hayoz D, Depairon M (1999) Physical activity monitoring based on accelerometry: validation and comparison with video observation. Med Biol Eng Comput 37(3):304–308CrossRefGoogle Scholar
  37. 37.
    Hoos MB, Kuipers H, Gerver WJ, Westerterp KR (2004) Physical activity pattern of children assessed by triaxial accelerometry. Eur J Clin Nutr 58(10):1425–1428CrossRefGoogle Scholar
  38. 38.
    Zhang K, Werner P, Sun M, Pi-Sunyer FX, Boozer CN (2003) Measurement of human daily physical activity. Obes Res 11(1):33–40CrossRefGoogle Scholar
  39. 39.
    Saremi K, Marehbian J, Yan X, Regnaux JP, Elashoff R, Bussel B, Dobkin BH (2006) Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects. Neurorehabilitation Neural Repair 20(2):297–305CrossRefGoogle Scholar
  40. 40.
    Mayagoitia RE, Nene AV, Veltink PH (2002) Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech 35(4):537–542CrossRefGoogle Scholar
  41. 41.
    Moe-Nilssen R, Helbostad JL (2005) Interstride trunk acceleration variability but not step width variability can differentiate between fit and frail older adults. Gait Posture 21(2):164–170CrossRefGoogle Scholar
  42. 42.
    Zhang K, Pi-Sunyer FX, Boozer CN (2004) Improving energy expenditure estimation for physical activity. Med Sci Sports Exerc 36(5):883–889CrossRefGoogle Scholar
  43. 43.
    LeMoyne R (2016) Advances for prosthetic technology: from historical perspective to current status to future application. SpringerGoogle Scholar
  44. 44.
    Winter DA(1990) Biomechanics and motor control of human movement. Wiley-InterscienceGoogle Scholar
  45. 45.
    Kavanagh JJ, Morrison S, James DA, Barrett R (2006) Reliability of segmental accelerations measured using a new wireless gait analysis system. J Biomech 39(15):2863–2872CrossRefGoogle Scholar
  46. 46.
    Lee JA, Cho SH, Lee JW, Lee KH, Yang HK (2007) Wearable accelerometer system for measuring the temporal parameters of gait. In: 29th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBS), pp 483–486Google Scholar
  47. 47.
    Bamberg SJ, Benbasat AY, Scarborough DM, Krebs DE, Paradiso JA (2008) Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans Inf Technol Biomed 12(4):413–423CrossRefGoogle Scholar
  48. 48.
    LeMoyne R, Jafari R (2006) Quantified deep tendon reflex device. In: 36th Society for Neuroscience Annual MeetingGoogle Scholar
  49. 49.
    LeMoyne R, Dabiri F, Coroian C, Mastroianni T, Grundfest W (2007) Quantified deep tendon reflex device for assessing response and latency. In: 37th Society for Neuroscience Annual MeetingGoogle Scholar
  50. 50.
    Jafari R, Encarnacao A, Zahoory A, Dabiri F, Noshadi H, Sarrafzadeh M (2005) Wireless sensor networks for health monitoring. In: The Second Annual International Conference of the IEEE, Mobile and Ubiquitous Systems: Networking and Services. MobiQuitous 2005, pp 479–481Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences, Center for Bioengineering InnovationNorthern Arizona UniversityFlagstaffUSA
  2. 2.IndependentPittsburghUSA

Personalised recommendations