Advertisement

Traditional Clinical Evaluation of Gait and Reflex Response by Ordinal Scale

  • Robert LeMoyneEmail author
  • Timothy Mastroianni
Chapter
  • 636 Downloads
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 27)

Abstract

The original technique for quantifying the rehabilitation status of a patient involves the observation by an expert clinician. Based on this expert observation the clinician applies a subjective interpretation to a series of ordinal scale rankings. Examples of scenarios for applying the ordinal scale methodology involve the evaluation of the tendon reflex response and gait. More sophisticated quantification techniques that are derived from the ordinal scale approach pertain to the evaluation of neuro-degenerative diseases, such as Friedreich’s ataxia. Intuitively these ordinal scale techniques are subjective, which causes their reliability to be a subject of controversy. Furthermore, the level of experience of the evaluating clinician can significantly influence the reliability of the evaluation. An alternative solution would be the incorporation of wearable and wireless systems, such smartphones and portable media devices, for quantifying human movement, such as gait and reflex response.

Keywords

Ordinal scale Tendon reflex response Gait Reflex quantification Gait quantification Friedreich’s ataxia Clinician Wearable Wireless system 

References

  1. 1.
    LeMoyne R, Mastroianni T (2015) Use of smartphones and portable media devices for quantifying human movement characteristics of gait, tendon reflex response, and Parkinson’s disease hand tremor. Methods and Protocols, Mobile Health Technologies, 335–358Google Scholar
  2. 2.
    LeMoyne R, Mastroianni T (2017) Wearable and wireless gait analysis platforms: smartphones and portable media devices. Wireless MEMS Networks and Applications, 129–152Google Scholar
  3. 3.
    LeMoyne R, Mastroianni T (2016) Telemedicine perspectives for wearable and wireless applications serving the domain of neurorehabilitation and movement disorder treatment. Telemedicine, 1–10Google Scholar
  4. 4.
    LeMoyne R, Coroian C, Cozza M, Opalinski P, Mastroianni T, Grundfest W (2009) The merits of artificial proprioception, with applications in biofeedback gait rehabilitation concepts and movement disorder characterization. Biomedical Engineering, 165–198Google Scholar
  5. 5.
    LeMoyne R, Coroian C, Mastroianni T, Grundfest W (2008) Accelerometers for quantification of gait and movement disorders: a perspective review. J Mech Med Biol 8(02):137–152CrossRefGoogle Scholar
  6. 6.
    Lemoyne R, Mastroianni T, Coroian C, Grundfest W (2011) Tendon reflex and strategies for quantification, with novel methods incorporating wireless accelerometer reflex quantification devices, a perspective review. J Mech Med Biol 11(03):471–513CrossRefGoogle Scholar
  7. 7.
    LeMoyne R, Mastroianni T (2017) Smartphone and portable media device: a novel pathway toward the diagnostic characterization of human movement. Smartphone from an Applied Research PerspectiveGoogle Scholar
  8. 8.
    Bickley L, Szilagyi PG (2003) Bates’ guide to physical examination and history-taking. Lippincott Williams & WilkinsGoogle Scholar
  9. 9.
    Litvan I, Mangone CA, Werden W, Bueri JA, Estol CJ, Garcea DO, Rey RC, Sica RE, Hallett M, Bartko JJ (1996) Reliability of the NINDS myotatic reflex scale. Neurology 47(4):969–972CrossRefGoogle Scholar
  10. 10.
    Manschot S, Van Passel L, Buskens E, Algra A, Van Gijn J (1998) Mayo and NINDS scales for assessment of tendon reflexes: between observer agreement and implications for communication. J Neurol Neurosurg Psychiatry 64(2):253–255CrossRefGoogle Scholar
  11. 11.
    Stam J, Crevel H (1990) Reliability of the clinical and electromyographic examination of tendon reflexes. J Neurol 237(7):427–431CrossRefGoogle Scholar
  12. 12.
    LeMoyne R, Dabiri F, Jafari R (2008) Quantified deep tendon reflex device, second generation. J Mech Med Biol 8(01):75–85CrossRefGoogle Scholar
  13. 13.
    LeMoyne R, Coroian C, Mastroianni T, Grundfest W (2008) Quantified deep tendon reflex device for response and latency, third generation. J Mech Med Biol 8(04):491–506CrossRefGoogle Scholar
  14. 14.
    LeMoyne R, Mastroianni T, Kale H, Luna J, Stewart J, Elliot S, Bryan F, Coroian C, Grundfest W (2011) Fourth generation wireless reflex quantification system for acquiring tendon reflex response and latency. J Mech Med Biol 11(01):31–54CrossRefGoogle Scholar
  15. 15.
    LeMoyne RC (2010) Wireless quantified reflex device. Ph.D. Dissertation UCLAGoogle Scholar
  16. 16.
    LeMoyne R, Mastroianni T, Coroian C, Grundfest W (2010) Wireless three dimensional accelerometer reflex quantification device with artificial reflex system. J Mech Med Biol 10(03):401–415CrossRefGoogle Scholar
  17. 17.
    LeMoyne R, Coroian C, Mastroianni T (2009) Wireless accelerometer reflex quantification system characterizing response and latency. In: 31st Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBS), pp 5283–5286Google Scholar
  18. 18.
    LeMoyne R, Mastroianni T, Grundfest W (2012) Quantified reflex strategy using an iPod as a wireless accelerometer application. In: 34th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBS), pp 2476–2479Google Scholar
  19. 19.
    LeMoyne R, Mastroianni T, Grundfest W, Nishikawa K (2013) Implementation of an iPhone wireless accelerometer application for the quantification of reflex response. In: 35th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBS), pp 4658–4661Google Scholar
  20. 20.
    LeMoyne R, Kerr WT, Zanjani K, Mastroianni T (2014) Implementation of an iPod wireless accelerometer application using machine learning to classify disparity of hemiplegic and healthy patellar tendon reflex pair. J Med Imaging Heal Inform 4(1):21–28CrossRefGoogle Scholar
  21. 21.
    LeMoyne R, Coroian C, Mastroianni T, Grundfest W (2008) Virtual proprioception. J Mech Med Biol 8(03):317–338CrossRefGoogle Scholar
  22. 22.
    Perry J, Garrett M, Gronley JK, Mulroy SJ (1995) Classification of walking handicap in the stroke population. Stroke 26(6):982–989CrossRefGoogle Scholar
  23. 23.
    Lord SE, Rochester L (2005) Measurement of community ambulation after stroke. Stroke 36(7):1457–1461CrossRefGoogle Scholar
  24. 24.
    Ferrarello F, Bianchi VA, Baccini M, Rubbieri G, Mossello E, Cavallini MC, Marchionni N, Di Bari M (2013) Tools for observational gait analysis in patients with stroke: a systematic review. Phys Ther 93(12):1673CrossRefGoogle Scholar
  25. 25.
    LeMoyne R (2016) Advances for prosthetic technology: from historical perspective to current status to future application. SpringerGoogle Scholar
  26. 26.
    LeMoyne R (2016) Amputations and Prostheses, a Topic of Global Concern. Advances for Prosthetic Technology: From Historical Perspective to Current Status to Future Application, 1–13Google Scholar
  27. 27.
    Brunnekreef JJ, van Uden CJ, van Moorsel S, Kooloos JG (2005) Reliability of videotaped observational gait analysis in patients with orthopedic impairments. BMC Musculoskelet Disord 6(1):17CrossRefGoogle Scholar
  28. 28.
    Stephenson J, Zesiewicz T, Gooch C, Wecker L, Sullivan K, Jahan I, Kim SH (2015) Gait and balance in adults with Friedreich’s ataxia. Gait Posture 41(2):603–607CrossRefGoogle Scholar
  29. 29.
    Ropper AH (2014) Adams and Victor’s principles of neurology. McGraw-HillGoogle Scholar
  30. 30.
  31. 31.
    Tai G, Yiu EM, Corben LA, Delatycki MB (2015) A longitudinal study of the Friedreich Ataxia Impact Scale. J Neurol Sci 352(1):53–57CrossRefGoogle Scholar
  32. 32.
    Lynch DR, Farmer JM, Tsou AY, Perlman S, Subramony SH, Gomez CM, Ashizawa T, Wilmot GR, Wilson RB, Balcer LJ (2006) Measuring Friedreich ataxia complementary features of examination and performance measures. Neurology 66(11):1711–1716CrossRefGoogle Scholar
  33. 33.
    LeMoyne R, Heerinckx F, Aranca T, De Jager R, Zesiewicz T, Saal HJ (2016) Wearable body and wireless inertial sensors for machine learning classification of gait for people with Friedreich’s ataxia. In: 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp 147–151Google Scholar
  34. 34.
    Rebula JR, Ojeda LV, Adamczyk PG, Kuo AD (2013) Measurement of foot placement and its variability with inertial sensors. Gait posture 38(4):974–980CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences, Center for Bioengineering InnovationNorthern Arizona UniversityFlagstaffUSA
  2. 2.IndependentPittsburghUSA

Personalised recommendations