Skip to main content

Conservation Beyond Protected Areas: The Challenge of Landraces and Crop Wild Relatives

  • Chapter
  • First Online:
Book cover Ecology, Economy and Society

Abstract

One effect of the Green Revolution has been the displacement of landraces and traditional livestock strains. Although humankind has historically cultivated more than 7000 species, 15 crops now provide 90% of the world’s food energy intake. The shift from traditional to modern production systems has led to genetic erosion of many crop species, and to the disappearance of a number of landraces—plants that are morphologically distinct, have some genetic integrity but are also genetically variable and dynamic, and have distinctive properties in terms of yield, date of maturity, pest and disease resistance. The paper evaluates the effects of genetic erosion on wealth. Local wealth effects stem from the role of landraces and wild crop relatives in managing environmental risk, especially in the least developed countries. Global wealth effects stem from the fact that loss of genetic resources reduces our capacity to adapt to environmental (especially climate) change. Using the conservation principle implicit in the Hotelling arbitrage condition, it will consider the efficiency and equity implications of genetic erosion in agriculture and forestry and will address the particular conservation challenge posed by the need for genetically dynamic crop resources to be conserved in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almasri, M.N., and J.J. Kaluarachchi. 2004. Assessment and Management of Long-term Nitrate Pollution of Ground Water in Agriculture-Dominated Watersheds. Journal of Hydrology 295: 225–245.

    Article  Google Scholar 

  • Bellon, M.R., and J. Berthaud. 2004. Transgenic Maize and the Evolution of Landrace Diversity in Mexico. The Importance of Farmers’ Behavior. Plant Physiology 134: 883–888.

    Article  Google Scholar 

  • Bitocchi, E., L. Nanni, M. Rossi, D. Rau, E. Bellucci, A. Giardini, A. Buonamici, G.G. Vendramin, and R. Papa. 2009. Introgression from Modern Hybrid Varieties into Landrace Populations of Maize (Zea mays ssp. mays L.) in Central Italy. Molecular Ecology 18: 603–621.

    Article  Google Scholar 

  • Bitocchi, E., E. Bellucci, D. Rau, E. Albertini, M. Rodriguez, F. Veronesi, G. Attene, and L. Nanni. 2015. European Flint Landraces Grown in situ Reveal Adaptive Introgression from Modern Maize. PLoS ONE 10: e0121381.

    Article  Google Scholar 

  • Bradshaw, J.E. 2017. Plant Breeding: Past, Present and Future. Euphytica 213: 60.

    Article  Google Scholar 

  • Brush, S.B. 2000a. Genes in the Field: On-farm Conservation of Crop Diversity. IDRC.

    Google Scholar 

  • Brush, S.B. 2000b. The Issues of in situ Conservation of Crop Genetic Resources. Genes in the Field: On-farm Conservation of Crop Diversity, 3–26. IPGRI, IDRC, Lewis Publishers.

    Google Scholar 

  • Brush, S.B., and H.R. Perales. 2007. A Maize Landscape: Ethnicity and Agro-Biodiversity in Chiapas Mexico. Agriculture, Ecosystems & Environment 121: 211–221.

    Article  Google Scholar 

  • Cavatassi, R., L. Lipper, and U. Narloch. 2011. Modern Variety Adoption and Risk Management in Drought Prone Areas: Insights from the Sorghum Farmers of Eastern Ethiopia. Agricultural Economics 42: 279–292.

    Article  Google Scholar 

  • Cobourn, K.M. 2015. Externalities and Simultaneity in Surface Water-Groundwater Systems: Challenges for Water Rights Institutions. American Journal of Agricultural Economics 97: 786–808.

    Article  Google Scholar 

  • Convention on Biological Diversity. 1992. New York: United Nations.

    Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2008. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 321: 926–929.

    Article  Google Scholar 

  • Dyer, G.A., A. López-Feldman, A. Yúnez-Naude, and J.E. Taylor. 2014. Genetic Erosion in Maize’s Center of Origin. Proceedings of the National Academy of Sciences 111: 14094–14099.

    Article  Google Scholar 

  • Food and Agriculture Organization. 2010. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Rome: FAO.

    Google Scholar 

  • Ford-Lloyd, B.V., D. Brar, G.S. Khush, M.T. Jackson, and P.S. Virk. 2009. Genetic Erosion Over Time of Rice Landrace Agrobiodiversity. Plant Genetic Resources 7: 163.

    Article  Google Scholar 

  • Galluzzi, G., M. Halewood, I.L. Noriega, and R. Vernooy. 2016. Twenty-five Years of International Exchanges of Plant Genetic Resources Facilitated by the Cgiar Genebanks: A Case Study on Global Interdependence. Biodiversity and Conservation 25: 1421–1446.

    Article  Google Scholar 

  • Gao, L.-Z. 2003. The Conservation of Chinese Rice Biodiversity: Genetic Erosion, Ethnobotany and Prospects. Genetic Resources and Crop Evolution 50: 17–32.

    Article  Google Scholar 

  • Gepts, P., and R. Papa. 2003. Possible Effects of (Trans) Gene Flow from Crops on the Genetic Diversity from Landraces and Wild Relatives. Environmental Biosafety Research 2: 89–103.

    Article  Google Scholar 

  • Hotelling, H. 1931. The Economics of Exhaustible Resources. Journal of Political Economy 39: 137–175.

    Article  Google Scholar 

  • International Fund for Agricultural Development. 2010. Rural Poverty Report 2011. Rome: IFAD.

    Google Scholar 

  • International Treaty on Plant Genetic Resources for Food and Agriculture. 2009. Rome: Food and Agriculture Organization.

    Google Scholar 

  • Jackson, L.E., U. Pascual, and T. Hodgkin. 2007. Utilizing and Conserving Agrobiodiversity in Agricultural Landscapes. Agriculture, Ecosystems & Environment 121: 196–210.

    Article  Google Scholar 

  • Khonje, M., J. Manda, A.D. Alene, and M. Kassie. 2015. Analysis of Adoption and Impacts of Improved Maize Varieties in Eastern Zambia. World Development 66: 695–706.

    Article  Google Scholar 

  • Kingsbury, N. 2009. Hybrid: The History and Science of Plant Breeding. Chicago: University of Chicago Press.

    Google Scholar 

  • Lankoski, J., and M. Ollikainen. 2003. Agri-Environmental Externalities: A Framework for Designing Targeted Policies. European Review of Agricultural Economics 30: 51–75.

    Article  Google Scholar 

  • Lipper, L., and D. Cooper. 2009. Managing Plant Genetic Resources for Sustainable Use in Food and Agriculture. Agrobiodiversity, Conservation and Economic Development 170: 27–39.

    Google Scholar 

  • Martínez-Castillo, J., L. Camacho-Pérez, J. Coello-Coello, and R. Andueza-Noh. 2012. Wholesale Replacement of Lima Bean (Phaseolus lunatus L.) Landraces Over the Last 30 Years in Northeastern Campeche, Mexico. Genetic Resources and Crop Evolution 59: 191–204.

    Article  Google Scholar 

  • Maxted, N., and S.P. Kell. 2009. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs. Rome: FAO Commission on Genetic Resources for Food and Agriculture.

    Google Scholar 

  • Meilleur, B.A., and T. Hodgkin. 2004. In Situ Conservation of Crop Wild Relatives: Status and Trends. Biodiversity and Conservation 13: 663–684.

    Article  Google Scholar 

  • Moore, G., and W. Tymnowski. 2005. Explanatory Guide to the International Treaty on Plant Genetic Resources for Food and Agriculture. Gland: IUCN.

    Book  Google Scholar 

  • Pascual, U., and C. Perrings. 2007. Developing Incentives and Economic Mechanisms for In Situ Biodiversity Conservation in Agricultural Landscapes. Agriculture, Ecosystems & Environment 121: 256–268.

    Article  Google Scholar 

  • Perales, R.H., S.B. Brush, and C.O. Qualset. 2003. Landraces of Maize in Central Mexico: An Altitudinal Transect. Economic Botany 57: 7–20.

    Google Scholar 

  • Perrings, C. 2014. Our Uncommon Heritage: Biodiversity, Ecosystem Services and Human Wellbeing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Phillips, J., J. Magos Brehm, B. van Oort, Å. Asdal, M. Rasmussen, and N. Maxted. 2017. Climate Change and National Crop Wild Relative Conservation Planning. Ambio 1–14.

    Google Scholar 

  • Pingali, P.L., M. Hossain, and R.V. Gerpacio. 1997. Asian Rice Bowls: The Returning Crisis? New York: CABI.

    Google Scholar 

  • Plucknett, D.L., and N.J. Smith. 2014. Gene Banks and the World’s Food. Princeton University Press.

    Google Scholar 

  • Pretty, J.N., C. Brett, D. Gee, R. Hine, C. Mason, J. Morison, H. Raven, M. Rayment, and G. Van der Bijl. 2000. An Assessment of the Total External Costs of UK Agriculture. Agricultural Systems 65: 113–136.

    Article  Google Scholar 

  • Pretty, J., C. Brett, D. Gee, R. Hine, C. Mason, J. Morison, M. Rayment, G. Van Der Bijl, and T. Dobbs. 2001. Policy Challenges and Priorities for Internalizing the Externalities of Modern Agriculture. Journal of Environmental Planning and Management 44: 263–283.

    Article  Google Scholar 

  • Raven, P.H. 2005. Transgenes in Mexican Maize: Desirability or Inevitability? Proceedings of the National Academy of Sciences of the United States of America 102: 13003–13004.

    Google Scholar 

  • Rose, G.L. 2004. The International Undertaking on Plant Genetic Resources for Food and Agriculture: Will the Paper be Worth the Trees? In Accessing Biological Resources: Complying with the Convention on Biological Diversity, ed. N. Stoianoff, 55–90. Dordrecht: Kluwer.

    Google Scholar 

  • Santilli, J. 2012. Agrobiodiversity and the Law. London: Earthscan.

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity. 2010. Global Biodiversity Outlook 3. Montréal: Convention on Biological Diversity.

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity. 2014. Global Biodiversity Outlook 4. Montreal: Convention on Biological Diversity.

    Google Scholar 

  • Shewayrga, H., D.R. Jordan, and I.D. Godwin. 2008. Genetic Erosion and Changes in Distribution of Sorghum (Sorghum bicolor L. (Moench)) Landraces in North-Eastern Ethiopia. Plant Genetic Resources 6: 1–10.

    Article  Google Scholar 

  • Smukler, S.M., S. Sánchez-Moreno, S.J. Fonte, H. Ferris, K. Klonsky, A.T. O’Geen, K.M. Scow, K.L. Steenwerth, and L.E. Jackson. 2010. Biodiversity and Multiple Ecosystem Functions in an Organic Farmscape. Agriculture, Ecosystems & Environment 139: 80–97.

    Article  Google Scholar 

  • Stewart, C.N., M.D. Halfhill, and S.I. Warwick. 2003. Transgene Introgression from Genetically Modified Crops to their Wild Relatives. Nature Reviews Genetics 4: 806–817.

    Article  Google Scholar 

  • Tegtmeier, E.M., and M.D. Duffy. 2004. External Costs of Agricultural Production in the United States. International Journal of Agricultural Sustainability 2: 1–20.

    Article  Google Scholar 

  • Timmermann, C., and Z. Robaey. 2016. Agrobiodiversity Under Different Property Regimes. Journal of Agricultural and Environmental Ethics 29: 285–303.

    Article  Google Scholar 

  • Tsegaye, B., and T. Berg. 2007. Genetic Erosion of Ethiopian Tetraploid Wheat Landraces in Eastern Shewa, Central Ethiopia. Genetic Resources and Crop Evolution 54: 715–726.

    Article  Google Scholar 

  • van de Wouw, M., C. Kik, T. van Hintum, R. van Treuren, and B. Visser. 2010. Genetic Erosion in Crops: Concept, Research Results and Challenges. Plant Genetic Resources 8: 1–15.

    Article  Google Scholar 

  • Villa, T.C.C., N. Maxted, M. Scholten, and B. Ford-Lloyd. 2007. Defining and Identifying Crop Landraces. Plant Genetic Resources 3: 373–384.

    Article  Google Scholar 

  • Ward, P.S., A.R. Bell, G.M. Parkhurst, K. Droppelmann, and L. Mapemba. 2016. Heterogeneous Preferences and the Effects of Incentives in Promoting Conservation Agriculture in Malawi. Agriculture, Ecosystems & Environment 222: 67–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Perrings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perrings, C. (2018). Conservation Beyond Protected Areas: The Challenge of Landraces and Crop Wild Relatives. In: Dayal, V., Duraiappah, A., Nawn, N. (eds) Ecology, Economy and Society. Springer, Singapore. https://doi.org/10.1007/978-981-10-5675-8_8

Download citation

Publish with us

Policies and ethics