Skip to main content

Phytoproteins and Induced Antiviral Defence in Susceptible Plants: The Indian Context

  • Chapter
  • First Online:
A Century of Plant Virology in India

Abstract

Amongst the many approaches being tried out to contain plant viruses, induced systemic resistance (ISR) is one that finds its basis in the induction of antiviral resistance in susceptible plants against viruses by application of sap from certain non-host plants. Phytoprotein based antiviral researches in India started with the first study published in 1952. Progress on such research in India has been focused on screening plants for potential antiviral activity and/or induction of resistance, purification of the active principles and their characterization, and insights into possible mechanisms of action. However, not much success has been achieved at the field level. Resistance induced by plant proteins has been found to be either local or systemic, and in a majority of cases, is reversed by actinomycin D, suggesting host transcriptional involvement. The major plants harbouring such proteins are Clerodendrum inerme, C. aculeatum, Boerhaavia diffusa, Bougainvillea spectabilis, B. xbuttiana, and Celosia cristata. Most proteins inducing resistance fall in the molecular mass range of 25–35 kDa, are heat tolerant, and basic glycoproteins. A few possess ribosome-inactivating properties and share amino acid sequence homologies with other known ribosome-inactivating proteins. Systemic resistance inducing proteins have been shown to induce the production of a virus inhibitory agent (VIA) in the susceptible plant. The VIAs are also proteins, in the range of 30–65 kDa, and are tolerant to conditions that would degrade normal cellular proteins. One such VIA has exhibited homologies to a lectin. A few studies have suggested that at least some of the resistance inducing proteins suppress virus replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya S (2013) Control of the potato virus X through application of root extracts of Chlorophytum nepalense to potato plants and tubers. Potato Res 56:1–10

    Article  CAS  Google Scholar 

  • Alberghina A (1976) The inhibitory activity of extracts of Chenopodium amaranticolor leaves on the infection of tobacco necrosis virus. J Phytopathol 87:17–27

    Article  Google Scholar 

  • Allard HA (1918) Effect of various salts, acids, germicides, etc., on the infectivity of the virus causing mosaic disease of tobacco. J Agric Res 13:619–637

    CAS  Google Scholar 

  • Apablaza GE, Bernier CC (1972) Inhibition of tobacco mosaic virus infection by plant extracts. Can J Bot 50:1473–1478

    Article  Google Scholar 

  • Awasthi LP (1981) The purification and nature of an antiviral protein from Cuscuta reflexa plants. Arch Virol 70:215–223

    Article  CAS  PubMed  Google Scholar 

  • Awasthi LP (1982) Characteristics and mode of action of a virus inhibitor from Cuscuta reflexa plants. Zentt Mikrobiol 137:509–518

    Google Scholar 

  • Awasthi LP, Chowdhury B, Verma HN (1984) Prevention of plant virus diseases by Boerhaavia diffusa inhibitor. Int J Trop Dis 2:41–44

    Google Scholar 

  • Awasthi LP, Kumar P (2003) Prevention of infection and multiplication of cucumber green mottle mosaic virus in muskmelon treated with Boerhaavia diffusa. Indian Phytopathol 56:362

    Google Scholar 

  • Awasthi LP, Singh S (2009) Management of ringspot disease of papaya through plant products. Indian Phytopathol 62:369–375

    Google Scholar 

  • Awasthi LP, Singh SP, Verma HN, Kluge S (2013) Further studies on the antiviral agent isolated from host plants pretreated with Boerhaavia diffusa glycoprotein. Virol Mycol 3:124

    Google Scholar 

  • Bag P, Chattopadhyay D, Mukherjee H, Ojha D, Mandal N, Sarkar MC, Chatterjee T, Das G, Chakraborti S (2012) Anti-herpes virus activities of bioactive fraction and isolated pure constituent of Mallotus peltatus: an ethnomedicine from Andaman Islands. Virol J 9:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Balasaraswathi R, Sadasivam S, Ward M, Walker JM (1998) An antiviral protein from Bougainvillea spectabilis roots: purification and characterization. Phytochemistry 47:1561–1565

    Article  CAS  PubMed  Google Scholar 

  • Balasubrahmanyam A, Baranwal VK, Lodha ML, Varma A, Kapoor HC (2000) Purification and properties of growth stage-dependent antiviral proteins from the leaves of Celosia cristata. Plant Sci 154:13–21

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, Stevens WA (1981) Studies on the mode of action of inhibitors of local lesion production by plant viruses. Microbios Lett 16:7–13

    Google Scholar 

  • Baranwal VK, Ahmad N (1997) Effect of Clerodendrum aculeatum leaf extract on tomato leaf curl virus. Indian Phytopathol 50:297–299

    Google Scholar 

  • Baranwal VK, Tumer NE, Kapoor HC (2002) Depurination of ribosomal RNA and inhibition of viral RNA translation by an antiviral protein of Celosia cristata. Indian J Exp Biol 40:1195–1197

    CAS  PubMed  Google Scholar 

  • Baranwal VK, Verma HN (1992) Localized resistance against virus infection induced by leaf extract of Celosia cristata. Plant Pathol 41:633–638

    Article  Google Scholar 

  • Baranwal VK, Verma HN (1993) Virus inhibitory activity of leaf extracts from different taxonomic group of higher plants. Indian Phytopathol 46:402–403

    Google Scholar 

  • Baranwal VK, Verma HN (1997) Characteristics of a virus inhibitor from the leaf extract of Celosia cristata. Plant Pathol 46:523–529

    Article  Google Scholar 

  • Barbieri L, Battelli MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. Biochem Biophys Acta 1154:237–282

    CAS  PubMed  Google Scholar 

  • Barbieri L, Polito A, Bolognesi A, Ciani M, Pelosi E, Farini V, Jha A, Sharma N, Vivanco JM, Chamberry A, Parente A, Stirpe F (2006) Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochem Biophys Acta 1760:783–792

    Article  CAS  PubMed  Google Scholar 

  • Barbieri L, Valbonesi P, Bonora E, Gorini P, Bolognesi A, Stirpe F (1997) Polynucleotide: adenosine glycosidase activity of ribosome-inactivating proteins: effect on DNA, RNA and poly(A). Nucleic Acids Res 25:518–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begam M, Kumar S, Roy S, Campanella JJ, Kapoor HC (2006) Molecular cloning and functional identification of a ribosome-inactivating/antiviral protein from leaves of post-flowering stage of Celosia cristata and its expression in E. coli. Phytochemistry 67:2441–2449

    Article  CAS  PubMed  Google Scholar 

  • Bhanuprakash V, Hosamani M, Balamurugan V, Gandhale P, Naresh P, Swarup D, Singh RK (2008) In vitro antiviral activity of plant extracts on goatpox virus replication. Indian J Exp Biol 46:120–127

    CAS  PubMed  Google Scholar 

  • Bhanuprakash V, Hosamani M, Balamurugan V, Singh RK, Swarup D (2007) In vitro antiviral activity of Eugenia jambolana plant extract on buffalo poxvirus: conventional and QPCR methods. Int J Trop Med 2:3–9

    Google Scholar 

  • Bharathi M (1999) Effect of plant extract and chemical inhibitors on cucumber mosaic virus of brinjal. J Mycology Plant Pathol 29:57–60

    Google Scholar 

  • Bharathimatha C, Doraiswamy S, Rabindran R, Renukadevi P, Velazhahan R (2003) Existence of antiviral principles (AVPs) in seed extracts of Harpullia cupanioides (Roxb.) against tomato spotted wilt virus (TSWV), rice tungro virus (TRV) and cowpea aphid borne mosaic virus (CABMV). Acta Phytopathol Entomol Hung 38:109–114

    Article  Google Scholar 

  • Bhargava KS, Singh R (1965) Inactivation of watermelon mosaic virus by juice of Portulacca grandiflora. Curr Sci 11:361

    Google Scholar 

  • Bhatia S, Kapoor HC, Lodha ML (2004) Modification of antioxidant status of host cell in response to Bougainvillea antiviral proteins. J Plant Biochem Biotechnol 13:113–118

    Article  CAS  Google Scholar 

  • Bhatia S, Lodha ML (2005) RNase and DNase activities of antiviral proteins from leaves of Bougainvillea xbuttiana. Indian J Biochem Biophys 42:152–155

    CAS  PubMed  Google Scholar 

  • Bolognesi A, Polito L, Olivieri F, Valbonesi P, Barbieri L, Battelli MG, Carusi MV, Benvenuto E, Del Vecchio BF, Di Maro A, Parente A, Di Loreto M, Stirpe F (1997) New ribosome-inactivating proteins with polynucleotide:adenosine glycosidase and antiviral activities from Basella rubra L. and Bougainvillea spectabilis Willd. Planta 203:422–429

    Article  CAS  PubMed  Google Scholar 

  • Bose K, Kulshreshtha K, Joshi RD (1983) Some aspects of the inhibition of bean common mosaic virus on ornamental plants. Agric Sci Dig 3:195–198

    Google Scholar 

  • Cakir B, Tumer NE (2015) Arabidopsis Bax inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisae. Microbiol Cell 2:43–56

    Article  CAS  Google Scholar 

  • Chandra K, Gupta BM (1981) Acquired local and systemic antiviral (TMV) resistance induced by treatment with T-poly (Trichothecium polysaccharide) in non-hypersensitive host plant Nicotiana tabacum cv. NP31. Curr Sci 50:69–71

    Google Scholar 

  • Chandra S, Singh BP, Nigam SK, Srivastava KM (1975) Effect of some naturally occurring plant products on Southern sunnhemp mosaic virus (SSMV). Curr Sci 44:511–512

    Google Scholar 

  • Chaudhry B, Muller-Uri F, Cameron-Mills V, Gough S, Simpson D, Skriver K, Mundy J (1994) The barley 60 kDa jasmonate-induced protein (JIP-60) is a novel ribosome-inactivating protein. Plant J 6:815–824

    Article  CAS  PubMed  Google Scholar 

  • Chen ZC, Antoniw JF, White RF (1993) A possible mechanism for the antiviral activity of pokeweed antiviral protein. Physiol Mol Plant Pathol 42:249–258

    Article  CAS  Google Scholar 

  • Chen Y, Peumans WJ, Van Damme EJM (2002) The Sambucus nigra type-2 ribosome-inactivating protein SNA-1 exhibits in planta antiviral activity in transgenic tobacco. FEBS Lett 516:27–30

    Article  CAS  PubMed  Google Scholar 

  • Choudhary NL, Yadav OP, Lodha ML (2008) Ribonuclease, deoxyribonuclease and antiviral activity of Escherichia coli-expressed Bougainvillea xbuttiana antiviral protein 1. Biochem Mosc 73:273–277

    Article  CAS  Google Scholar 

  • Chowdhury AK, Saha NK (1985) Inhibition of urdbean leaf crinkle virus by different plant extracts. Indian Phytopathol 38:566–568

    Google Scholar 

  • Cillo F, Palukaitis P (2014) Transgenic resistance. Adv Virus Res 90:35–146

    Article  PubMed  Google Scholar 

  • Collinge DB, Jorgensen HJL, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    Article  CAS  PubMed  Google Scholar 

  • Darekar RN, Sawant DM (1989) Inhibition of bottle gourd mosaic by plant leaf extracts. Indian Phytopathol 42:339

    Google Scholar 

  • Deepthi N, Madhusudhan KN, Uday Shankar AC, Kumar HB, Prakash HS, Shetty HS (2007) Effect of plant extracts and acetone precipitated proteins from six medicinal plants against tobamovirus infection. Int J Virol 3:80–87

    Article  Google Scholar 

  • Devi PS, Devi LR, Singh IM (2008) Evaluation of plant products against aphid (Myzus persicae Sultz) transmission of mosaic disease of leaf mustard (Brassica juncea var. rugosa). Indian Phytopathol 61:514–517

    Google Scholar 

  • Devi PR, Doraiswamy S, Nakkeeran S, Rabindran R, Ganapathy T, Ramiah M, Mathiyazhagan S (2004) Antiviral action of Harpulia cupanioides and Mirabilis jalapa against tomato spotted wilt virus (TSWV) infecting tomato. Arch Phytopathol Plant Protect 37:245–259

    Article  Google Scholar 

  • Dhaliwal AS, Dhaliwal GK (1971) Inhibition of tobacco mosaic virus multiplication by extract from Allium cepa and Allium sativum. Adv Front Plant Sci 28:305–310

    Google Scholar 

  • Di R, Tumer NE (2015) Pokeweed antiviral protein: its cytotoxicity mechanisms and applications in plant disease resistance. Toxins 7:755–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duggar BM, Armstrong JK (1925) The effect of treating virus of tobacco mosaic with juice of various plants. Ann Mol Bot Gard 12:359–365

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Dutt S, Balasubrahmanyam A, Lodha ML (2000) Purification and partial characterization of antiviral proteins from Chenopodium album L. leaves. J Plant Physiol 156:808–810

    Article  CAS  Google Scholar 

  • Dutt S, Narwal S, Kapoor HC, Lodha ML (2003) Isolation and characterization of two protein isoforms with antiviral activity from Chenopodium album L. leaves. J Plant Biochem Biotechnol 12:117–122

    Article  CAS  Google Scholar 

  • Dutt S, Yadav OP, Kapoor HC, Lodha ML (2004) Possible mechanism of action of antiviral proteins from the leaves of Chenopodium album L. Indian J Biochem Biophys 41:29–33

    CAS  PubMed  Google Scholar 

  • Edelbaum O, Sher N, Rubinstein M, Novick D, Tal N, Moyer M, Ward E, Ryals J, Sela I (1991) Two antiviral proteins, gp35 and gp22 correspond to 1,3-β-glucanase and an isoform of PR-5. Plant Mol Biol 17:171–173

    Article  CAS  PubMed  Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: Research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    CAS  Google Scholar 

  • Elad Y, Rav-David D, Leibman D, Vintal H, Vunsh R, Moorthy H, Gal-On A, Loebenstein G (2012) Tomato plants transformed with inhibitor-of-virus-replication gene are partially resistant to several pathogenic fungi. Ann Appl Biol 161:16–23

    Article  Google Scholar 

  • Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes: the site and characteristics of the modification in 28S ribosomal RNA caused by the toxins. J Biol Chem 262:5908–5912

    CAS  PubMed  Google Scholar 

  • Endo Y, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem 263:8735–8739

    CAS  PubMed  Google Scholar 

  • Faoro F, Gozzo F (2015) Is modulating virus virulence by induced systemic resistance realistic? Plant Sci 234:1–13

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: Turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Gendron Y, Kassanis B (1954) The importance of the host species in determining the action of virus inhibitors. Ann Appl Biol 41:183–188

    Article  CAS  Google Scholar 

  • Gera A, Loebenstein G, Salomon R, Franck A (1990) Inhibitor of virus replication (IVR) from protoplast of a hypersensitive tobacco cultivar infected with tobacco mosaic virus is associated with a 23k protein species. Phytopathology 80:78–81

    Article  Google Scholar 

  • Gholizadeh A, Kapoor HC (2004) Modification in the purification protocol of Celosia cristata antiviral proteins lead to protein that can be N-terminally sequenced. Protein Pept Lett 11:551–561

    Article  PubMed  Google Scholar 

  • Gholizadeh A, Kohnehrouz BB, Santha IM, Lodha ML, Kapoor HC (2005) Cloning and expression of small cDNA fragment encoding strong antiviral peptide from Celosia cristata in Escherichia coli. Biochem Mosc 70:1005–1010

    Article  CAS  Google Scholar 

  • Gholizadeh A, Kumar M, Balasubrahmanyam A, Sharma S, Narwal S, Lodha S, Kapoor HC (2004) Antioxidant activity of antiviral proteins from Celosia cristata. J Plant Biochem Biotechnol 13:13–18

    Article  CAS  Google Scholar 

  • Gianinazzi S (1982) Antiviral agents and inducers of virus resistance: analogies with interferon. In: RKS W (ed) Active defence mechanisms in plants. Plenum Publishing Corp, New York, pp 275–296

    Chapter  Google Scholar 

  • Gianinazzi S, Martin C, Vallee JC (1970) Hypersensibilite aux virus, temperature et proteins soluble chez le Nicotiana Xanthi n.c. Apparition de nouvelles macromolecules lors de la repression de la synthese virale. CR Acad Sci D 270:2382–2386

    Google Scholar 

  • Girbes T, Ferreras JM, Arias FJ, Stirpe F (2004) Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini-Rev Med Chem 4:461–476

    Article  CAS  PubMed  Google Scholar 

  • Gozzo F, Faoro F (2013) Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J Agric Food Chem 61:12473–12491

    Article  CAS  PubMed  Google Scholar 

  • Grasso S (1977) Investigations on the action mechanism of a virus inhibitor from Phytolacca Americana. Riv di Patol Veg 13:77–84

    Google Scholar 

  • Guleria S, Kumar A (2006) Azadirachta indica leaf extract induces resistance in sesame against Alternaria leaf spot. J Cell Mol Biol 5:81–86

    Google Scholar 

  • Gupta BM, Chandra K, Verma HN, Verma GS (1973) Induction of antiviral resistance in Nicotiana glutinosa plants by treatment with Trichothecium polysaccharide and its reversal by actinomycin D. J Gen Virol 24:211–213

    Article  Google Scholar 

  • Gupta VK, Raychaudhuri SP (1971) Nature of virus inhibitor in Acacia arabica. Ann Phytopath Soc Jpn 37:124–127

    Article  Google Scholar 

  • Gupta VK, Raychaudhuri SP (1972) Mechanism of inhibition of Potato virus Y by extracts from leaves of some woody plants. J Phytopathol 73:256–262

    Google Scholar 

  • Gupta RK, Srivastava A, Verma HN (2004) Callus culture and organogenesis in Boerhaavia diffusa: a potent antiviral protein containing plant. Physiol Mol Biol Plants 10:263–268

    CAS  Google Scholar 

  • Hu X, Reddy AS (1997) Cloning and expression of a PR5-Like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol Biol 34:949–959

    Article  CAS  PubMed  Google Scholar 

  • Hudak KA, Parikh BA, Di R, Baricevic M, Santana M, Seskar M, Tumer NE (2004) Generation of pokeweed antiviral protein mutations in Saccharomyces cerevisiae: evidence that ribosome depurination is not sufficient for cytotoxicity. Nucleic Acids Res 32:4244–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudak KA, Wang P, Tumer NE (2000) A novel mechanism for inhibition of translation by pokeweed antiviral protein: depurination of the capped RNA template. RNA 6:369–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias R, Perez Y, de Torre C, Ferreras J, Antolin P, Jimenez P, Rojo MA, Mendez E, Girbes T (2005) Molecular characterization and systemic induction of single-chain ribosome-inactivating protein (RIPs) in sugar beet (Beta vulgaris) leaves. J Exp Bot 56:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Jayashree K, Pun KB, Doraiswamy S (1999) Effect of plant extracts and derivatives, butter milk and virus inhibitory chemicals on pumpkin yellow vein mosaic virus transmission. Indian Phytopathol 52:357–361

    Google Scholar 

  • Karran RA, Hudak KA (2008) Depurination within the intergenic region of Brome mosaic virus RNA3 inhibits viral replication in vitro and in vivo. Nucleic Acids Res 36:7230–7239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karran RA, Hudak KA (2011) Depurination of brome mosaic virus RNA3 inhibits its packaging into virus particles. Nucleic Acids Res 39:7209–7222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan G, Doraisamy S, Rabindran R, Ganapathy T (2009) Evaluation of antiviral principals for the induction of systemic resistance in black gram (Vigna mungo) against urdbean leaf crinkle virus. Arch Phytopathol Plant Protect 42:1172–1186

    Article  CAS  Google Scholar 

  • Kassanis B, Kleczkowski A (1948) The isolation and some properties of a virus-inhibiting protein from Phytolacca esculenta. J Gen Microbiol 2:143–153

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Khan MMAA, Jain DC, Khakuni RS, Thakur RS (1991) Occurrence of some antiviral sterols in Artemisia annua. Plant Sci 75:161–165

    Article  CAS  Google Scholar 

  • Khan MMAA, Verma HN (1990) Partial characterization of an induced virus inhibitory protein associated with systemic resistance in Cyamopsis tetragonoloba (L.) Taub. plants. Ann Appl Biol 117:617–623

    Article  Google Scholar 

  • Khurana SMP, Bhargava KS (1970) Effect of plant extracts on the activity of three papaya viruses. J Gen Appl Microbiol 16:225–230

    Article  Google Scholar 

  • Khurana SMP, Singh B (1972) Studies on Calotropis procera latex as inhibitor of tobacco mosaic virus. Phytopathol Z 73:341–346

    Article  Google Scholar 

  • Kim JS, Kim YO, Ryu HJ, Kwak YS, Lee JY, Kang H (2003) Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments. Plant Cell Physiol 44:412–414

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lee J, Lee C-h, Woo SY, Kang H, Seo S-G, Kim S-H (2015) Activation of pathogenesis-related genes by the rhizobacterium Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol J 31:195–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishna R, McDonald KA, Dandekar AM, Jackman AP, Falk B (2002) Expression of recombinant trichosanthin, a ribosome-inactivating protein, in transgenic tobacco. J Biotechnol 97:69–88

    Article  Google Scholar 

  • Kulkarni VR, Byadagi AS (2004) Evaluation of plant extracts against safflower mosaic virus disease. Karnataka J Agric Sci 17:838–840

    Google Scholar 

  • Kumar P, Awasthi LP (2009) Prevention of infection and spread of viral diseases in cucumber (Cucumis sativus L.) through botanicals. J Plant Dis Sci 4:25–32

    Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. doi:10.1155/2013/162750

  • Kumar H, Singh R, Gupta V, Zutshi SK (2015) Performance of different germplasm, plant extracts and insecticides against yellow vein mosaic of okra (OYVMV) under field conditions. VEGETOS 28:31–37

    Google Scholar 

  • Kumar D, Verma HN, Tuteja N, Tewari KK (1997) Cloning and characterization of a gene encoding an antiviral protein from Clerodendrum aculeatum L. Plant Mol Biol 33:745–751

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Verma GS (1974) Effect of plant latex on virus infectivity. Zent Bakteriol Parasit Infect Hyg 129:271–277

    CAS  Google Scholar 

  • Lal R, Verma GS, Verma HN (1973) Effect of some plant extracts on infectivity of tobacco mosaic virus. Indian Phytopathol 26:122–128

    Google Scholar 

  • Lavanya N, Saravanakumar D, Rajendran L, Ramiah M, Raguchander T, Samiyappan R (2009) Management of sunflower necrosis virus through antiviral substances. Arch Phytopathol Plant Protect 42:265–276

    Article  CAS  Google Scholar 

  • Lodge JK, Kaniewski WK, Tumer NE (1993) Broad spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci U S A 90:7089–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodha ML, Agarwal S, Biswas K, Vasudev S, Dubey SC (2010) Antimicrobial activity of native and recombinant antiviral proteins from Bougainvillea xbuttiana leaves against plant pathogenic fungi and viruses. Indian J Agric Biochem 23:83–90

    CAS  Google Scholar 

  • Lodha ML, Choudhary NL (2011) Purification and evaluation of antiviral proteins from Bougainvillea xbuttiana against Helicoverpa armigera. Indian J Agri Sci 81:74–78

    CAS  Google Scholar 

  • Loebenstein G, Gera A (1981) Inhibitor of virus replication released from TMV infected protoplasts of a local lesion responding tobacco cultivar. Virology 114:132–139

    Article  CAS  PubMed  Google Scholar 

  • Loebenstein G, Rav-David D, Leibman D, Gal-On A, Vunsh R, Czosnek H, Elad Y (2010) Tomato plants transformed with the inhibitor-of-virus-replication gene are partially resistant to Botrytis cinerea. Phytopathology 100:225–229

    Article  CAS  PubMed  Google Scholar 

  • Lohani S, Jan A, Verma HN (2007) In vivo and in vitro resistance in tobacco by Boerhaavia diffusa systemic resistance inducing protein and transfer of induced resistance in in vitro tobacco plants. Biotechnology 6:389–392

    Article  CAS  Google Scholar 

  • Louis V, Balakrishnan S (1996) Effect of application of selected medicinal plant extracts on the incidence of pumpkin mosaic virus. Indian Phytopathol 49:373–377

    Google Scholar 

  • Madhusudhan KN, Nalini MS, Prakash HS, Shetty HS (2005) Effect of inducers against tobamovirus infection in tomato and bell pepper. Int J Bot 1:59–61

    Article  Google Scholar 

  • Madhusudhan KN, Vinayarani G, Deepak SA, Niranjana SR, Prakash HS, Singh GP, Sinha AK, Prasad BC (2011) Antiviral activity of plant extracts and other inducers against tobamoviruses infection in bell pepper and tomato plants. Int J Plant Pathol 2:35–42

    Article  Google Scholar 

  • Mahmoud SYM, Gad-Rab SMF, Hussein N, Shoreit AAM (2010) Antiviral activity of latex from Ficus nitida against plant viruses. Glob J Biotechnol Biochem 5:198–205

    Google Scholar 

  • Mandal B, Singh B (2001) Inhibition of virus transmission by guava leaf extract. Indian Phytopathol 54:381–382

    Google Scholar 

  • Manickam K, Rajappan K (1999) Field efficacy of plant extracts and chemicals against green gram leaf curl disease. Indian J Virol 15:35–37

    Google Scholar 

  • Mariappan V, Saxena RC (1983) Effect of custard apple oil and neem oil on survival of Nephotettix virescens (Homoptera Cicadellidae) and on rice tungro virus transmission. J Econ Entomol 76:573–576

    Article  Google Scholar 

  • McIntyre JL, Dodds JA, Hare JD (1981) Effects of localized infections of Nicotiana tabacum by tobacco mosaic virus on systemic resistance against diverse pathogens and an insect. Phytopathology 71:297–301

    Article  Google Scholar 

  • McKeen CD (1956) The inhibitory activity of extracts of Capsicum frutescens on plant virus infections. Can J Bot 34:891–903

    Article  CAS  Google Scholar 

  • Mozes R, Antignus Y, Sela I, Harpaz I (1978) The chemical nature of an antiviral factor (AVF) from virus-infected plants. J Gen Virol 38:241–249

    Article  CAS  Google Scholar 

  • Mukerjee K, Awasthi LP, Verma HN (1981) The inhibitory activity of an interfering agent, extracted from the leaves of host plants treated with Datura leaf extract, on plant virus infections. Z Pflanzenkr Pflanzensch 88:228–234

    Google Scholar 

  • Murty NS, Nagarajan K (1980) Virus inhibitory effect of extracts from germinating seeds of flowering plants. Indian Phytopathol 33:615–617

    Google Scholar 

  • Murty NS, Nagarajan K (1986) Role of plant extracts in the control of TMV infection in nursery and field grown tobacco. Indian Phytopathol 39:98–100

    Google Scholar 

  • Nagaich BB, Singh S (1970) An antiviral principle induced by potato virus X in Capsicum pendulum. Virology 40:269–271

    Article  Google Scholar 

  • Nagarajan K, Murty NS (1975) Effect of certain plant extracts and plant latex on the inhibition of tobacco mosaic virus infection. Tob Res 1:122–132

    Google Scholar 

  • Narayanasamy P (1990) Antiviral principles for virus disease management. In: Vidhyasekaran P (ed) Basic research for crop disease management, Daya Publishing House, New Delhi, pp 139–150

    Google Scholar 

  • Narwal S, Balasubrahmanyam A, Lodha ML, Kapoor HC (2001a) Purification and properties of antiviral proteins from the leaves of Bougainvillea xbuttiana. Indian J Biochem Biophys 38:342–347

    CAS  PubMed  Google Scholar 

  • Narwal S, Balasubrahmanyam A, Sadhna P, Kapoor HC, Lodha ML (2001b) A systemic resistance inducing antiviral protein with N-glycosidase activity from Bougainvillea xbuttiana leaves. Indian J Exp Biol 39:600–603

    CAS  PubMed  Google Scholar 

  • Nielsen K, Boston RS (2001) Ribosome-inactivating proteins: a plant perspective. Annu Rev Plant Physiol Plant Mol Biol 52:785–816

    Article  CAS  PubMed  Google Scholar 

  • Nutan MM, Dezzutti CS, Kulshreshtha S, Rawat AK, Srivastava SK, Malhotra S, Verma A, Ranga U, Gupta SK (2013) Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol J 10:309. doi:10.1186/1743-422X-10-309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obrig TG, Irvin JD, Hardesty B (1973) The effect of an antiviral peptide on the ribosomal reactions of the peptide elongation enzymes, EF-I and EF-II. Arch Biochem Biophys 155:278–289

    Article  CAS  PubMed  Google Scholar 

  • Olivieri F, Prasad V, Valbonesi P, Srivastava S, Ghosal-Chowdhury P, Barbieri L, Bolognesi A, Stirpe F (1996) A systemic antiviral resistance inducing protein isolated from Clerodendrum inerme Gaertn. is a polynucleotide:adenosine glycosidase (ribosome-inactivating protein). FEBS Lett 396:132–134

    Article  CAS  PubMed  Google Scholar 

  • Owens RA, Bruening G, Shepherd JR (1973) A possible mechanism for the inhibition of plant viruses by a peptide from Phytolacca Americana. Virology 56:390–393

    Article  CAS  PubMed  Google Scholar 

  • Paliwal YC, Nariani TK (1965a) Effect of plant extracts on the infectivity of sunnhemp (Crotalaria juncea) mosaic virus. Acta Virol 9:261–267

    CAS  PubMed  Google Scholar 

  • Paliwal YC, Nariani TK (1965b) Properties of the inhibitors of sunnhemp (Crotalaria juncea) mosaic virus in certain plant extracts. Acta Virol 9:455–458

    CAS  PubMed  Google Scholar 

  • Pandey AK, Bhargava KS (1980) Antiviral activity of crude extracts of some Pteridophytes. Indian Fern J 3:132–133

    Google Scholar 

  • Pandey AK, Bhargava KS (1983) Isolation and partial characterization of virus inhibitor from the leaf extract of a fern, Ampelopteris prolifera (Retz.) copel. Indian J Plant Pathol 1:193–198

    Google Scholar 

  • Pandey AK, Bhargava KS (1984) Effect of Ampelopteris prolifera leaf extract on the activity of tobacco mosaic and cucumber mosaic viruses. Indian Phytopathol 37:271–277

    Google Scholar 

  • Pandey BP, Mohan J (1986) Inhibition of turnip mosaic virus by plant extracts. Indian Phytopathol 39:489–491

    Google Scholar 

  • Pardeep K, Awasthi LP (2009) Prevention of infection and spread of viral diseases in cucumber (Cucumis sativus L.) through botanicals. J Plant Dis Sci 4:25–32

    Google Scholar 

  • Park C-J, Kim K-J, Shin R, Park JM, Shin Y-C, Paek K-H (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37:186–198

    Article  CAS  PubMed  Google Scholar 

  • Patel BN, Patel GJ (1979) Inhibition of tobacco mosaic virus infection by some plant extracts. Tob Res 5:33–36

    Google Scholar 

  • Prasad V (1986) Alterations in enzyme activity during induced antiviral state by leaf extract. J Indian Bot Soc 65:90–94

    CAS  Google Scholar 

  • Prasad V (1988) Association of polyphenoloxidase with induced antiviral resistance in two host-inducer combinations. J Indian Bot Soc 67:53–55

    Google Scholar 

  • Prasad V, Ghosal-Chowdhury P, Srivastava S (2001) Purification of two basic 1,3-ß-glucanase isoforms from Cyamopsis tetragonoloba (L.) Taub. induced to resist virus infections. Israel J Plant Sci 49:15–19

    Article  CAS  Google Scholar 

  • Prasad V, Mishra SK, Srivastava S, Srivastava A (2014) A virus inhibitory protein isolated from Cyamopsis tetragonoloba upon induction of systemic antiviral resistance shares partial amino acid sequence homology with a lectin. Plant Cell Rep 33:1467–1478

    Article  CAS  PubMed  Google Scholar 

  • Prasad V, Misra SK, Krishna SK (2012) Induced systemic resistance against viruses in susceptible plants: phytoproteins and rhizobacteria provide two fascinating avenues. In: Rao GP, Baranwal VK, Mandal B, Rishi N (eds) Recent trends in plant virology. Studium Press LLC, Houston, pp 467–482

    Google Scholar 

  • Prasad HP, Shankar UAC, Kumar BH, Shetty SH, Prakash HS (2007) Management of Bean common mosaic virus strain blackeye cowpea mosaic (BCMV-BICM) in cowpea using plant extracts. Arch Phytopathol Plant Protect 40:139–147

    Article  Google Scholar 

  • Prasad V, Srivastava S, Varsha, Verma HN (1995) Two basic proteins isolated from Clerodendrum inerme Gaertn. are inducers of systemic antiviral resistance in susceptible plants. Plant Sci 110:73–82

    Article  CAS  Google Scholar 

  • Praveen S, Tripathi S, Varma A (2001) Isolation and characterization of an inducer protein (Crip-31) from Clerodendrum inerme leaves responsible for induction of systemic resistance against viruses. Plant Sci 161:453–459

    Article  CAS  Google Scholar 

  • Pun KB, Doraiswamy S, Jeyarajan R (1999) Screening of plant species for the presence of antiviral principles against okra yellow vein mosaic virus. Indian Phytopathol 52:221–223

    Google Scholar 

  • Rafiq M, Jabri A, Siddiqui KA, Khan TA, Husain SI, Mahmood K (1985) Inhibitory effect of latex on lesion caused by some plant viruses. Indian Bot Rep 4:213–214

    Google Scholar 

  • Rajapakse RHS, Janaki CR (2006) Insecticidal properties of Chenopodium-based botanical against virus vectors, Myzus persicae and Frankliniella schultezi. Abstract OP 9/14. In: XVI Annual convention of IVS and International symposium on management of vector-borne viruses, ICRISAT, Patencheru, Hyderabad (India)

    Google Scholar 

  • Rajesh S, Balasaraswathi R, Doraisamy S, Sadasivam S (2005) Synthesis and cloning of cDNA encoding an antiviral protein from the leaves of Bougainvillea spectabilis Willd. (Nyctaginaceae). World J Agric Sci 1:101–104

    Google Scholar 

  • Rajinimala N, Rabindran R, Ramaiah M (2009) Management of bittergourd mosaic virus (BGYMV) by using virus inhibiting chemical, biocontrol agents, antiviral principles (AVP) and insecticide. Arch Phytopathol Plant Protect 42:738–750

    Article  CAS  Google Scholar 

  • Rao DG, Raychaudhuri SP (1965) Further studies on the inhibition of ringspot strain of potato virus x by plant extracts, culture filtrates of Trichothecium roseum and chemicals. Indian J Microbiol 5:9–12

    Google Scholar 

  • Rao GP, Shukla K (1985) Antiviral activity of copra extract and physical properties of the inhibitor. Indian Phytopathol 38:623

    Google Scholar 

  • Rao GP, Singh RK, Pandey AK, Singh R (1985) Induction of local and systemic resistance of potato virus by flower extracts. Indian J Virol 1:174–182

    Google Scholar 

  • Raychaudhuri SP, Chadha KC (1965) Deodar fruit extract-an inhibitor of chilli mosaic virus. Indian Phytopathol 18:97–98

    Google Scholar 

  • Raychaudhuri SP, Prasad HC (1965) Effect of plant extracts and microbial growth products on the infectivity of radish mosaic virus. Indian J Microbiol 5:13–16

    Google Scholar 

  • Ready MP, Brown DT, Robertus JD (1986) Extracellular localization of pokeweed antiviral protein. Proc Natl Acad Sci U S A 83:5053–5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K, Parthier B (1994) JIP60, a methyl-jasmonate induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci U S A 91:7012–7016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Sadhana P, Begum M, Kumar S, Lodha ML, Kapoor HC (2006) Purification, characterization and cloning of antiviral/ribosome-inactivating protein from Amaranthus tricolor leaves. Phytochemistry 67:1865–1873

    Article  CAS  PubMed  Google Scholar 

  • Roy AN, Sinha BP, Gupta KC (1979) The inhibitory effect of plant juices on the infectivity of top necrosis virus of pea. Indian J Microbiol 19:198–201

    Google Scholar 

  • Roychoudhury R (1984) Virus inhibitor from Solanum torvum. Indian Phytopathol 37:665–668

    Google Scholar 

  • Roychoudhury R, Basu PK (1983) Characterization of a plant virus inhibitor from two Solanum sp. Indian J Exp Biol 21:213–215

    Google Scholar 

  • Rustgi S, Pollmann S, Buhr F, Springer A, Reinbothe C, von Wettstein D, Reinbothe S (2014) JIP-60-mediated, jasmonate-and senescence induced molecular switch in translation toward stress and defense protein synthesis. Proc Natl Acad Sci U S A 111:14181–14186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saigopal DVR, Prasad VS, Sreenivasulu P (1986) Antiviral activity in extracts of Phyllanthus fraternus Webst (P. niruri). Curr Sci 55:264–265

    Google Scholar 

  • Saveetha K, Sankaralingam A, Ramanathan A, Pant R (2006) Symptom, epidemiology and management of finger millet mottle streak disease. Arch Phytopathol Plant Protect 39:409–419

    Article  CAS  Google Scholar 

  • Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273:300–306

    Article  CAS  PubMed  Google Scholar 

  • Schrot J, Weng A, Melzig MF (2015) Ribosome-inactivating and related proteins. Toxins 7:1556–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sela I, Applebaum SW (1962) Occurrence of an antiviral factor in virus infected plants. Virology 17:543–548

    Article  CAS  PubMed  Google Scholar 

  • Shahidi-Noghabi S, Van Damme EJM, Smagghe G (2009) Expression of Sambucus nigra agglutinin (SNA-I’) from elderberry bark in transgenic tobacco plants results in enhanced resistance to different insect species. Transgenic Res 18:249–259

    Article  CAS  PubMed  Google Scholar 

  • Sharma YR, Chohan JS (1973) Inhibitors of cucumis virus 1 in extracts of leaf and seeds of different plants. Indian Phytopathol 26:172–173

    Google Scholar 

  • Sharma DC, Raychaudhuri SP (1965) Antiviral effect of plant extracts and culture filtrate of Aspergillus niger on ringspot strain of potato virus x. Indian J Microbiol 5:41–48

    Google Scholar 

  • Shukla HH, Dubey P, Chaturvedi RV (1989) Antiviral properties of essential oils of Foeniculum vulgare and Pimpinella anisum L. Agronomie 9:277–279

    Article  Google Scholar 

  • Singh R (1969) The inhibitory activity of some plant juices on the infectivity of watermelon mosaic virus. Acta Virol 13:244–246

    CAS  PubMed  Google Scholar 

  • Singh AB (1972) Inhibitory activity of some plant extracts on the infectivity of papaya leaf reduction virus. Acta Phytopathol Acad Sci Hung 7:175–178

    Google Scholar 

  • Singh S, Awasthi LP, Singh RK (2011a) Induction of systemic resistance through antiviral agents of plant origin against papaya ring spot disease (Carica papaya L.) Arch Phytopathol Plant Protect 44:1676–1682

    Article  Google Scholar 

  • Singh SK, Awasthi LP, Singh S, Sharma NK (2011b) Protection of mungbean and urdbean crops against vector borne mungbean yellow mosaic virus through botanicals. Curr Bot 2:8–11

    Google Scholar 

  • Singh S, Awasthi LP, Verma HN (2004) Prevention and control of yellow mosaic disease of mungbean by application of aqueous root extract of Boerhaavia diffusa. Indian Phytopathol 57:303–307

    Google Scholar 

  • Singh AK, Najam A, Verma HN, Awasthi LP (2009) Control of natural virus infection on okra (Abelmoschus esculentus) by root. Intl J Plant Protect 2:195–198

    Google Scholar 

  • Singh P, Sharma S, Prasad V (2011c) Verapamil, a calcium channel blocker, induces systemic antiviral resistance in susceptible plants. J Phytopathol 159:127–129

    Article  Google Scholar 

  • Singh R, Singh R (1973) Properties of an inhibitor of potato virus x from bark of Ficus elastica. Indian Phytopathol 26:560–563

    Google Scholar 

  • Singh R, Singh R (1975) Inhibition of potato virus x by Rumex hastatus extract. Sci Cult 43:268–269

    Google Scholar 

  • Smookler MM (1971) Properties of inhibitors of plant virus infection occurring in the leaves of species of Chenopodiaceae. Ann Appl Biol 69:157–158

    Article  Google Scholar 

  • Sreeja S, Sreeja S (2009) An in vitro study on antiproliferative and antiestrogenic effects of Boerhaavia diffusa L. extract. J. Ethnopharmacol 126:221–225

    Article  Google Scholar 

  • Srinivasulu B, Jeyarajan R (1986) Effect of leaf extract on the infection of rice tungro virus in rice. Indian J Virol 2:176–180

    Google Scholar 

  • Srivastava KM, Chandra S, Singh BP, SMH A (1976) Induction of local and systemic resistance in Nicotiana glutinosa against TMV by leaf extract of Dahlia. Ind J Exp Biol 4:377–379

    Google Scholar 

  • Srivastav SK, Ansari NA, Tewari JP (2011) Eco-friendly management of tomato leaf curl disease. Intl J Plant Protect 4:321–323

    Google Scholar 

  • Srivastava A, Gupta RK, Verma HN (2004) Micropropagation of Clerodendrum aculeatum through adventitious shoot induction and production of consistent amount of virus resistance inducing protein. Indian J Exp Biol 42:1200–1207

    CAS  PubMed  Google Scholar 

  • Srivastava S, Prasad V (2014) Induction of defence responses for biological control of plant diseases. In: Sharma N (ed) Biological controls for preventng food deterioration. Wiley, UK, pp 321–339

    Google Scholar 

  • Srivastava A, Srivastava S, Prasad V (2015a) Systemic antiviral resistance induced in papaya by CAP-34, a resistance inducing protein from Clerodendrum aculeatum, is associated with a proteinaceous virus inhibitory activity. J Plant Pathol 97:45–54

    Google Scholar 

  • Srivastava A, Trivedi S, Krishna SK, Verma HN, Prasad V (2009) Suppression of papaya ringspot virus infection in Carica papaya with CAP-34, a systemic antiviral resistance inducing protein from Clerodendrum aculeatum. Eur J Plant Pathol 123:241–246

    Article  CAS  Google Scholar 

  • Srivastava S, Verma HN, Srivastava A, Prasad V (2015b) BDP-30, a systemic resistance inducer from Boerhaavia diffusa L., suppresses TMV infection, and displays homology with ribosome-inactivating proteins. J Biosci 40:125–135

    Article  CAS  PubMed  Google Scholar 

  • Stevens WA, Spurdon C, Onyon LJ, Stirpe F (1981) Effect of inhibitors of protein synthesis from plants on tobacco mosaic virus infection. Experientia 37:257–259

    Article  CAS  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant ‘pathogenesis-related’ proteins and their role in defence against pathogens. Biochimie 75:687–706

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 44:371–383

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F (2013) Ribosome-inactivating proteins: From toxins to useful proteins. Toxicon 67:12–16

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F, Lappi DA (eds) (2014) Ribosome inactivating proteins: ricin and related proteins. Wiley, USA

    Google Scholar 

  • Sundaram S, Dwivedi P, Purwar S (2011) In vitro evaluation of antibacterial activities of crude extracts of Withania somnifera (Ashwagandha) to bacterial pathogens. Asian J Biotechnol 3:194–199

    Article  Google Scholar 

  • Surendran M, Shanmugam V, Rajagopalan B, Ramanian N (1999) Efficacy of botanicals on brinjal mosaic virus. Plant Dis Res 14:63–66

    Google Scholar 

  • Tewari JP (1976) Inhibition of three strains of watermelon mosaic virus by bark extract. Curr Sci 45:696–697

    Google Scholar 

  • Thirumalaisamy PP, Rathi YPS, Tripathi HS (2003) Screening of some plant extracts inhibitory to urdbean leaf crinkle virus. Indian Phytopathol 56:233–235

    Google Scholar 

  • Tiwari P, Khan H, Ansari NA, Tewari JP (2010) Management of pea mosaic virus by leaf extract of some medicinal plants. Intl J Plant Protect 3:117–119

    Google Scholar 

  • Tourlakis ME, Karran RA, Desouza L, Siu KW, Hudak KA (2010) Homodimerization of pokeweed antiviral protein as a mechanism to limit depurination of pokeweed ribosomes. Mol Plant Pathol 11:757–767

    CAS  PubMed  Google Scholar 

  • Tumer NE, Hwang D-J, Bonness M (1997) C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proc Natl Acad Sci U S A 94:3866–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defence-related proteins. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”: changes in protein constitution after infection with tobacco mosaic virus. Virology 40:199–211

    Article  Google Scholar 

  • Vandenbussche F, Desmyter S, Ciani M, Proost P, Peumans WJ, Van Damme EJ (2004) Analysis of the in planta antiviral activity of elderberry ribosome-inactivating proteins. Eur J Biochem 271:1508–1515

    Article  CAS  PubMed  Google Scholar 

  • Vasudeva RS, Nariani TK (1952) Host range of bottle gourd mosaic virus and its inactivation by plant extracts. Phytopathology 42:149–152

    Google Scholar 

  • Venkatesan S, Radjacommare R, Nakkeeran S, Chandrasekaran A (2010) Effect of biocontrol agent, plant extracts and safe chemicals in suppression of mungbean yellow mosaic virus (MYMV) in black gram (Vigna mungo). Arch Phytopathol Plant Protect 43:59–72

    Article  CAS  Google Scholar 

  • Verma HN (1982) Inhibitor of plant viruses from higher plants. In: Singh BP, Raychoudhary SP (eds) Current trends in plant virology. Today and Tomorrow’s printers and publishers, New Delhi, pp 151–159

    Google Scholar 

  • Verma HN, Awasthi LP (1979) Antiviral activity of Boerhaavia diffusa root extract and the physical properties of the virus inhibitor. Can J Bot 57:926–932

    Article  CAS  Google Scholar 

  • Verma HN, Awasthi LP (1980) Occurrence of a highly antiviral agent in plants treated with Boerhaavia diffusa inhibitor. Can J Bot 58:2141–2144

    Article  Google Scholar 

  • Verma HN, Awasthi LP, Mukerjee K (1979b) Induction of systemic resistance by antiviral plant extracts in non-hypersensitive hosts. Z Pflanzenkr Pflansensch 86:735–740

    Google Scholar 

  • Verma HN, Awasthi LP, Mukerjee K (1979c) Prevention of virus infection and multiplication by extracts from medicinal plants. Phytopathol Z 96:71–76

    Article  Google Scholar 

  • Verma HN, Awasthi LP, Saxena KC (1979a) Isolation of the virus inhibitor from the root extract of Boerhaavia diffusa inducing systemic resistance in plants. Can J Bot 57:1214–1217

    Article  CAS  Google Scholar 

  • Verma HN, Baranwal VK (1983) Antiviral activity and the physical properties of the leaf extract of Chenopodium ambrosiodes L. Proc Indian Acad Sci 92:461–465

    Google Scholar 

  • Verma HN, Baranwal VK (2011) Potency of plant products in control of virus diseases of plants. In: Dubey NK (ed) Natural products in plant pest management. CAB International, India, pp 149–174

    Google Scholar 

  • Verma HN, Baranwal VK, Srivastava S (1998) Antiviral substances of plant origin. In: Hadidi A, Khetarpal RK, Koganezawa A (eds) Plant virus disease control. American Phytopathological Society (APS) Press, St Paul, pp 154–162

    Google Scholar 

  • Verma HN, Chowdhery B, Rastogi P (1984) Antiviral activity of different Clerodendrum L. species. Z Pflanzenkr Pflansensch 91:34–41

    Google Scholar 

  • Verma HN, Dwivedi SD (1983) Prevention of plant virus diseases in some economically important plants by Bougainvillea leaf extract. Indian J Plant Pathol 1:97–100

    Google Scholar 

  • Verma HN, Dwivedi SD (1984) Properties of a virus inhibiting agent isolated from plants following treatment with Bougainvillea spectabilis leaf extract. Physiol Plant Pathol 25:93–101

    Article  CAS  Google Scholar 

  • Verma HN, Khan MMAA (1985) Occurrence of a strong virus interfering agent in susceptible plants sprayed with Pseuderanthemum atropurpureum tricolor leaf extract. Indian J Virol 1:26–34

    Google Scholar 

  • Verma HN, Khan MMAA, Dwivedi SD (1985a) Biophysical properties of highly antiviral agents present in Pseuderanthemum atropurpureum and Bougainvillea spectabilis extracts. Indian J Plant Pathol 3:13–20

    Google Scholar 

  • Verma HN, Kumar V (1979) Prevention of potato from viruses and insect vectors. J Indian Pot Assoc 6:157–161

    Google Scholar 

  • Verma HN, Kumar V (1980) Prevention of plant virus diseases by Mirabilis jalapa leaf extract. New Bot 7:87–91

    Google Scholar 

  • Verma HN, Mukerjee K (1975) Brinjal leaf extract induced resistance to virus infection in plants. Indian J Exp Biol 13:416–417

    Google Scholar 

  • Verma HN, Prasad V (1987) Systemic induced antiviral resistance by plant extract alters physiology of susceptible test host. Indian J Plant Pathol 5:69–72

    Google Scholar 

  • Verma HN, Prasad V (1988) Metabolic alterations associated with host mediated systemic antiviral resistance. Indian Phytopathol 41:332–335

    CAS  Google Scholar 

  • Verma HN, Prasad V (1992) Virus inhibitors and inducers of resistance: potential avenues for biological control of viral diseases. In: Mukerji KG, Tewari JP, Arora DK, Saxena G (eds) Recent developments in biocontrol of plant diseases. Aditya Book Pvt Ltd., New Delhi, pp 81–110

    Google Scholar 

  • Verma HN, Rastogi P, Prasad V, Srivastava A (1985b) Possible control of natural virus infection on Vigna radiata and Vigna mungo by plant extracts. Indian J Plant Pathol 3:21–24

    Google Scholar 

  • Verma VS, Raychaudhuri SP (1970) Effect of tannins from Terminalia chebula on the infectivity of potato virus. Acta Microbiol Pol 19(B):127–132

    CAS  Google Scholar 

  • Verma VS, Raychaudhuri SP (1972) Effect of catechol tannins isolated from medicinal plant Chrysobalanus icacao on the infectivity of potato virus x Zent Bakenot Abt II 127:178–179

    Google Scholar 

  • Verma VS, Raychaudhuri SP, Khan AM (1969) Properties and nature of inhibitors of potato virus X in four medicinal plant extracts. Biologia Plantarum (Praha) 11:384–387

    Article  Google Scholar 

  • Verma HN, Srivastava A (1985) A potent systemic inhibitor of plant virus infection from Aerva sanguinolenta Blume. Curr Sci 54:526–528

    Google Scholar 

  • Verma HN, Srivastava S, Varsha KD (1996) Induction of systemic resistance in plants against viruses by a basic protein from Clerodendrum aculeatum leaves. Phytopathology 86:485–492

    Article  CAS  Google Scholar 

  • Verma HN, Varsha (1995a) Induction of systemic resistance by leaf extract of Clerodendrum aculeatum in sunnhemp rosette virus. Indian Phytopathol 48:218–221

    Google Scholar 

  • Verma HN, Varsha (1995b) Prevention of natural occurrence of tobacco leaf curl disease by primed Clerodendrum aculeatum leaf extract. In: Verma JP, Varma A, Kumar D (eds) Detection of plant pathogens and their management. Angkor Publishers (P) Ltd, New Delhi, pp 202–206

    Google Scholar 

  • Verma HN, Varsha, Baranwal, VK (1995) Agricultural role of endogenous antiviral substances of plant origin. Chessin M, DeBorde D, Zipf A, Antiviral proteins in higher plants, CRC Press, Boca Raton, 23–37

    Google Scholar 

  • Verma GS, Verma HN (1965) Tobacco mosaic virus inhibitory principle in wheat extract. Indian J Microbiol 5:17–20

    Google Scholar 

  • Verma GS, Verma HN, Srivastava KM, Mukerjee K (1975) Properties and mode of action of a tobacco mosaic virus inhibitor from seed extract of Lawsonia alba. New Botanist 2:109–113

    Google Scholar 

  • Vijayan P, Raghu C, Ashok G, Dhanaraj SA, Suresh B (2004) Antiviral activity of medicinal plants of Nilgiris. Indian J Med Res 120:24–29

    CAS  PubMed  Google Scholar 

  • Vivanco JM, Tumer NE (2003) Translation inhibition of capped and uncapped viral RNAs mediated by ribosome-inactivating proteins. Phytopathology 93:588–595

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Kumar S, Jain P, Pundir RK, Jadon S, Sharma A, Khetwal KS, Gupta KC (2011) Antimicrobial activity of different extracts of roots of Rumex nepalensis Spreng. Indian J Nat Prod Resour 2:65–69

    Google Scholar 

  • Zaidi ZB, Gupta VP, Samad A, Naqvi QA (1988) Inhibition of spinach mosaic virus by extracts of some medicinal plants. Curr Sci 57:151–152

    Google Scholar 

  • Zoubenko O, Hudak K, Tumer NE (2000) A non-toxic pokeweed antiviral protein mutant inhibits pathogen infection via a novel salicylic acid-independent pathway. Plant Mol Biol 44:219–229

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, V., Srivastava, S. (2017). Phytoproteins and Induced Antiviral Defence in Susceptible Plants: The Indian Context. In: Mandal, B., Rao, G., Baranwal, V., Jain, R. (eds) A Century of Plant Virology in India. Springer, Singapore. https://doi.org/10.1007/978-981-10-5672-7_28

Download citation

Publish with us

Policies and ethics