Skip to main content

Warming Up Density Functional Theory

  • Chapter
  • First Online:

Abstract

Density functional theory (DFT) has become the most popular approach to electronic structure across disciplines, especially in material and chemical sciences. In 2016, at least 30,000 papers used DFT to make useful predictions or give insight into an enormous diversity of scientific problems, ranging from battery development to solar cell efficiency and far beyond. The success of this field has been driven by usefully accurate approximations based on known exact conditions and careful testing and validation. In the last decade, applications of DFT in a new area, warm dense matter, have exploded. DFT is revolutionizing simulations of warm dense matter including applications in controlled fusion, planetary interiors, and other areas of high energy density physics. Over the past decade or so, molecular dynamics calculations driven by modern density functional theory have played a crucial role in bringing chemical realism to these applications, often (but not always) in excellent agreement with experiment. This chapter summarizes recent work from our group on density functional theory at nonzero temperatures, which we call thermal DFT. We explain the relevance of this work in the context of warm dense matter, and the importance of quantum chemistry to this regime. We illustrate many basic concepts on a simple model system, the asymmetric Hubbard dimer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T.R. Mattsson, M.P. Desjarlais, Phys. Rev. Lett. 97, 017801 (2006), https://doi.org/10.1103/PhysRevLett.97.017801

  2. U.D. of Energy, Basic research needs for high energy density laboratory physics: Report of the workshop on high energy density laboratory physics research needs. Technical report, Office of Science and National Nuclear Security Administration (2009)

    Google Scholar 

  3. W. Lorenzen, B. Holst, R. Redmer, Phys. Rev. Lett. 102, 115701 (2009), https://doi.org/10.1103/PhysRevLett.102.115701

  4. M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Science 348(6242), 1455 (2015)

    Article  CAS  Google Scholar 

  5. M.D. Knudson, M.P. Desjarlais, Phys. Rev. Lett. 103, 225501 (2009), https://doi.org/10.1103/PhysRevLett.103.225501

  6. M.D. Knudson, M.P. Desjarlais, A. Pribram-Jones, Phys. Rev. B 91, 224105 (2015)

    Article  Google Scholar 

  7. B. Holst, R. Redmer, M.P. Desjarlais, Phys. Rev. B 77, 184201 (2008)

    Article  Google Scholar 

  8. A. Kietzmann, R. Redmer, M.P. Desjarlais, T.R. Mattsson, Phys. Rev. Lett. 101, 070401 (2008)

    Article  Google Scholar 

  9. S. Root, R.J. Magyar, J.H. Carpenter, D.L. Hanson, T.R. Mattsson, Phys. Rev. Lett. 105(8), 085501 (2010), https://doi.org/10.1103/PhysRevLett.105.085501

  10. R.F. Smith, J.H. Eggert, R. Jeanloz, T.S. Duffy, D.G. Braun, J.R. Patterson, R.E. Rudd, J. Biener, A.E. Lazicki, A.V. Hamza, J. Wang, T. Braun, L.X. Benedict, P.M. Celliers, G.W. Collins, Nature 511(7509), 330 (2014), https://doi.org/10.1038/nature13526

  11. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and Challenges in Warm Dense Matter, Lecture Notes in Computational Science and Engineering, vol. 96 (Springer International Publishing, 2014)

    Google Scholar 

  12. S. Ichimaru, Statistical Plasma Physics. Frontiers in Physics (Westview, Boulder, CO, 2004), http://cds.cern.ch/record/1106845

  13. C.K. Birdsall, A.B. Langdon, Plasma physics via computer simulation (CRC Press, 2004)

    Google Scholar 

  14. T. Sjostrom, J. Dufty, Phys. Rev. B 88, 115123 (2013), https://doi.org/10.1103/PhysRevB.88.115123

  15. V.V. Karasiev, T. Sjostrom, J. Dufty, S.B. Trickey, Phys. Rev. Lett. 112, 076403 (2014), https://doi.org/10.1103/PhysRevLett.112.076403

  16. K. Burke, J. Chem. Phys. 136(15), 150901 (2012), http://link.aip.org/link/?JCP/136/150901/1

  17. W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133 (1965), https://doi.org/10.1103/PhysRev.140.A1133

  18. R. Car, M. Parrinello, Phys. Rev. Lett. 55(22), 2471 (1985), https://doi.org/10.1103/PhysRevLett.55.2471

  19. N.D. Mermin, Phys. Rev. 137, A: 1441 (1965)

    Google Scholar 

  20. B. Militzer, D.M. Ceperley, Phys. Rev. Lett. 85, 1890 (2000), https://doi.org/10.1103/PhysRevLett.85.1890

  21. V.S. Filinov, M. Bonitz, W. Ebeling, V.E. Fortov, Plasma Physics and Controlled Fusion 43(6), 743 (2001), http://stacks.iop.org/0741-3335/43/i=6/a=301

  22. B. Militzer, Phys. Rev. B 79, 155105 (2009), https://doi.org/10.1103/PhysRevB.79.155105

  23. T. Schoof, M. Bonitz, A. Filinov, D. Hochstuhl, J. Dufty, Contributions to Plasma Physics 51(8), 687 (2011), https://doi.org/10.1002/ctpp.201100012

  24. K.P. Driver, B. Militzer, Phys. Rev. Lett. 108, 115502 (2012), https://doi.org/10.1103/PhysRevLett.108.115502

  25. T. Schoof, S. Groth, J. Vorberger, M. Bonitz, Phys. Rev. Lett. 115, 130402 (2015), https://doi.org/10.1103/PhysRevLett.115.130402

  26. T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, M. Bonitz, Phys. Rev. Lett. 117, 156403 (2016), https://doi.org/10.1103/PhysRevLett.117.156403

  27. J.M. McMahon, M.A. Morales, C. Pierleoni, D.M. Ceperley, Rev. Mod. Phys. 84, 1607 (2012), https://doi.org/10.1103/RevModPhys.84.1607

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), http://link.aps.org/doi/10.1103/PhysRevLett.77.3865

  29. C. Toher, A. Filippetti, S. Sanvito, K. Burke, Phys. Rev. Lett. 95, 146402 (2005)

    Article  CAS  Google Scholar 

  30. S.Y. Quek, L. Venkataraman, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B. Neaton, Nano Letters 7(11), 3477 (2007), https://doi.org/10.1021/nl072058i. PMID: 17900162

  31. M. Koentopp, C. Chang, K. Burke, R. Car, J. Phys. Condens. Matter 20(8), 083203 (2008), http://stacks.iop.org/0953-8984/20/i=8/a=083203

  32. P. Hohenberg, W. Kohn, Phys. Rev. 136(3B), B864 (1964), https://doi.org/10.1103/PhysRev.136.B864

  33. E.H. Lieb, Rev. Mod. Phys. 53, 603 (1981), https://doi.org/10.1103/RevModPhys.53.603

  34. M.A. Marques, M.J. Oliveira, T. Burnus, Comput. Phys. Commun. 183(10), 2272 (2012), https://doi.org/10.1016/j.cpc.2012.05.007

  35. J.P. Perdew, Y. Wang, Phys. Rev. B 45(23), 13244 (1992), https://doi.org/10.1103/PhysRevB.45.13244

  36. J.P. Perdew, A. Ruzsinszky, L.A. Constantin, J. Sun, G.I. Csonka, J. Chem. Theor. Comput. 5(4), 902 (2009), https://doi.org/10.1021/Ct800531s

  37. L.O. Wagner, E.M. Stoudenmire, K. Burke, S.R. White, Phys. Rev. Lett. 111, 093003 (2013), https://doi.org/10.1103/PhysRevLett.111.093003

  38. D.J. Carrascal, J. Ferrer, J.C. Smith, K. Burke, J. Phys.C ondens. Matter 27(39), 393001 (2015), http://stacks.iop.org/0953-8984/27/i=39/a=393001

  39. N.T. Maitra, The Journal of Chemical Physics 144(22), 220901 (2016), https://doi.org/10.1063/1.4953039

  40. N.T. Maitra, F. Zhang, R.J. Cave, K. Burke, J. Chem. Phys. 120(13), 5932 (2004), http://link.aip.org/link/?JCP/120/5932/1

  41. A. Dreuw, J.L. Weisman, M. Head-Gordon, J. Chem. Phys. 119(6) (2003)

    Google Scholar 

  42. D.J. Tozer, J. Chem. Phys. 119(24) (2003)

    Google Scholar 

  43. B.G. Levine, C. Ko, J. Quenneville, T.J. Martnez, Mol. Phys. 104(5–7), 1039 (2006), https://doi.org/10.1080/00268970500417762

  44. M. van Faassen, P.L. de Boeij, R. van Leeuwen, J.A. Berger, J.G. Snijders, Phys. Rev. Lett. 88, 186401 (2002)

    Article  Google Scholar 

  45. A. Theophilou, J. Phys. C 12, 5419 (1979)

    Article  CAS  Google Scholar 

  46. E.K.U. Gross, L.N. Oliveira, W. Kohn, Phys. Rev. A 37, 2809 (1988), https://doi.org/10.1103/PhysRevA.37.2809

  47. E.K.U. Gross, M. Petersilka, T. Grabo, Chem. Appl. Density-Funct. Theor. 629, 42 (1996)

    Article  CAS  Google Scholar 

  48. A. Pribram-Jones, Z.H. Yang, J.R. Trail, K. Burke, R.J. Needs, C.A. Ullrich, J. Chem. Phys. 140, 18A541 (2014)

    Article  Google Scholar 

  49. Z.h. Yang, J.R. Trail, A. Pribram-Jones, K. Burke, R.J. Needs, C.A. Ullrich, Phys. Rev. A 90, 042501 (2014), https://doi.org/10.1103/PhysRevA.90.042501

  50. B. Senjean, E.D.H. rd, M.M. Alam, S. Knecht, E. Fromager. Mol. Phys. 114(7–8), 968 (2016), https://doi.org/10.1080/00268976.2015.1119902

  51. L.M.K. Deur, E. Fromager, Submitted (2016)

    Google Scholar 

  52. M.M. Alam, S. Knecht, E. Fromager, Phys. Rev. A 94, 012511 (2016), https://doi.org/10.1103/PhysRevA.94.012511

  53. K. Burke, J. Werschnik, E.K.U. Gross, J. Chem. Phys. 123(6), 062206 (2005), https://doi.org/10.1063/1.1904586

  54. M. Levy, J. Perdew, Phys. Rev. A 32, 2010 (1985), https://doi.org/10.1103/PhysRevA.32.2010

  55. E.H. Lieb, S. Oxford, Int. J. Quantum Chem. 19(3), 427 (1981), http://dx.doi.org/10.1002/qua.560190306

  56. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015), https://doi.org/10.1103/PhysRevLett.115.036402

  57. S. Pittalis, C.R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, E.K.U. Gross, Phys. Rev. Lett. 107, 163001 (2011), https://doi.org/10.1103/PhysRevLett.107.163001

  58. A. Pribram-Jones, S. Pittalis, E. Gross, K. Burke, in Frontiers and Challenges in Warm Dense Matter, Lecture Notes in Computational Science and Engineering, vol. 96, ed. by F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (Springer International Publishing, 2014), pp. 25–60, https://doi.org/10.1007/978-3-319-04912-0_2

  59. A. Pribram-Jones, K. Burke, Phys. Rev. B 93, 205140 (2016), https://doi.org/10.1103/PhysRevB.93.205140

  60. D. Langreth, J. Perdew, Solid State Commun. 17, 1425 (1975)

    Article  Google Scholar 

  61. W.T.D. Frydel, K. Burke, J. Chem. Phys. 112, 5292 (2000)

    Article  CAS  Google Scholar 

  62. J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105(22), 9982 (1996), http://link.aip.org/link/?JCP/105/9982/1

  63. K. Burke, J.C. Smith, P.E. Grabowski, A. Pribram-Jones, Phys. Rev. B 93, 195132 (2016), https://doi.org/10.1103/PhysRevB.93.195132

  64. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    Article  CAS  Google Scholar 

  65. J.W. Dufty, S.B. Trickey, Phys. Rev. B 84, 125118 (2011), https://doi.org/10.1103/PhysRevB.84.125118

  66. J.W. Dufty, S. Trickey, Mol. Phys. 114(7–8), 988 (2016)

    Article  CAS  Google Scholar 

  67. P.R.T. Schipper, O.V. Gritsenko, E.J. Baerends, Theoretical chemistry accounts: theory, computation, and modeling (Theoretica Chimica Acta) 98, 16 (1997), https://doi.org/10.1007/s002140050273

  68. P. Ziesche, S. Kurth, J.P. Perdew, Computational Materials Science 11(2), 122 (1998), https://doi.org/10.1016/S0927-0256(97)00206-1

  69. J.P.S. Kurth, P. Blaha, Int. J. Quantum Chem. 75, 889 (1999)

    Article  CAS  Google Scholar 

  70. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009)

    Article  Google Scholar 

  71. D. Ceperley, M. Kalos, K. Binder, Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979)

    Google Scholar 

  72. M.P. Nightingale, C.J. Umrigar, Quantum Monte Carlo methods in physics and chemistry. 525 (Springer Science & Business Media, 1998)

    Google Scholar 

  73. S.R. White, Phys. Rev. Lett. 69(19), 2863 (1992), http://link.aps.org/doi/10.1103/PhysRevLett.69.2863

  74. N. Schuch, F. Verstraete, Nat. Phys. 5, 732 (2009), https://doi.org/10.1038/nphys1370

  75. C.J. Umrigar, X. Gonze, Phys. Rev. A 50(5), 3827 (1994)

    Article  CAS  Google Scholar 

  76. C. Filippi, C.J. Umrigar, M. Taut, The Journal of Chemical Physics 100(2), 1290 (1994), https://doi.org/10.1063/1.466658

  77. C.J. Huang, C.J. Umrigar, Phys. Rev. A 56, 290 (1997), https://doi.org/10.1103/PhysRevA.56.290

  78. N. Lima, M. Silva, L. Oliveira, K. Capelle, Phys. Rev. Lett. 90(14), 146402 (2003)

    Article  CAS  Google Scholar 

  79. J.C. Smith, A. Pribram-Jones, K. Burke, Phys. Rev. B 93, 245131 (2016), https://doi.org/10.1103/PhysRevB.93.245131

  80. G. Stefanucci, R. Van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, 2013)

    Google Scholar 

  81. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52(12), 997 (1984), https://doi.org/10.1103/PhysRevLett.52.997

  82. K. Burke, J. Werschnik, E.K.U. Gross, J. Chem. Phys. 123(6), 062206 (2005), http://link.aip.org/link/?JCP/123/062206/1

  83. D. Gericke, M. Schlanges, W. Kraeft, Physics Letters A 222(4), 241 (1996), https://doi.org/10.1016/0375-9601(96)00654-8

  84. V. Rizzi, T.N. Todorov, J.J. Kohanoff, A.A. Correa, Phys. Rev. B 93, 024306 (2016). https://doi.org/10.1103/PhysRevB.93.024306

  85. d A. Pribram-Jones, P.E. Grabowski, K. Burke, Phys. Rev. Lett. 116, 233001 (2016), https://doi.org/10.1103/PhysRevLett.116.233001

  86. E. Gross, W. Kohn, Phys. Rev. Lett. 55, 2850 (1985)

    Article  CAS  Google Scholar 

  87. L. Kadanoff, G. Baym, D. Pines, Quantum Statistical Mechanics. Advanced Books Classics Series (Addison-Wesley, 1994)

    Google Scholar 

  88. L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, G. Kresse, Nat. Mater. 9(9), 741 (2010)

    Article  CAS  Google Scholar 

  89. S.X. Hu, L.A. Collins, T.R. Boehly, J.D. Kress, V.N. Goncharov, S. Skupsky, Phys. Rev. E 89, 043105 (2014), https://doi.org/10.1103/PhysRevE.89.043105

  90. B. Bennett, J. Johnson, G. Kerley, G. Rood, Recent developments in the sesame equation-of-state library. Technical report, Los Alamos Scientific Lab., N. Mex. (USA) (1978)

    Google Scholar 

  91. Y.T. Lee, R. More, Phys. Fluids (1958–1988) 27(5), 1273 (1984)

    Google Scholar 

  92. B. Wilson, V. Sonnad, P. Sterne, W. Isaacs, J. Quant. Spectrosc. Radiat. Transfer 99(1), 658 (2006)

    Article  CAS  Google Scholar 

  93. Y. Miguel, T. Guillot, L. Fayon, arXiv preprint arXiv:1609.05460 (2016)

  94. D. Clery, Science 353(6298), 438 (2016), https://doi.org/10.1126/science.353.6298.438

  95. H.F. Wilson, B. Militzer, Phys. Rev. Lett. 108, 111101 (2012), https://doi.org/10.1103/PhysRevLett.108.111101

  96. S. Root, L. Shulenburger, R.W. Lemke, D.H. Dolan, T.R. Mattsson, M.P. Desjarlais, Phys. Rev. Lett. 115, 198501 (2015), https://doi.org/10.1103/PhysRevLett.115.198501

  97. H.F. Wilson, M.L. Wong, B. Militzer, Phys. Rev. Lett. 110, 151102 (2013), https://doi.org/10.1103/PhysRevLett.110.151102

  98. P. Sperling, E.J. Gamboa, H.J. Lee, H.K. Chung, E. Galtier, Y. Omarbakiyeva, H. Reinholz, G. Röpke, U. Zastrau, J. Hastings, L.B. Fletcher, S.H. Glenzer, Phys. Rev. Lett. 115, 115001 (2015), https://doi.org/10.1103/PhysRevLett.115.115001

  99. P. Davis, T. Döppner, J. Rygg, C. Fortmann, L. Divol, A. Pak, L. Fletcher, A. Becker, B. Holst, P. Sperling, et al., Nat. Commun. 7 (2016)

    Google Scholar 

  100. D. Kraus, A. Ravasio, M. Gauthier, D. Gericke, J. Vorberger, S. Frydrych, J. Helfrich, L. Fletcher, G. Schaumann, B. Nagler, et al., Nat. Commun. 7 (2016)

    Google Scholar 

  101. A.D. Baczewski, L. Shulenburger, M.P. Desjarlais, S.B. Hansen, R.J. Magyar, Phys. Rev. Lett. 116, 115004 (2016), https://doi.org/10.1103/PhysRevLett.116.115004

  102. L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople, J. Chem. Phys. 106(3) (1997)

    Google Scholar 

  103. K.R.L.A. Curtiss, P.C. Redfern, J. Pople, J. Chem. Phys. 109, 42 (1998)

    Article  CAS  Google Scholar 

  104. J. Paier, R. Hirschl, M. Marsman, G. Kresse, The Journal of chemical physics 122(23), 234102 (2005), https://doi.org/10.1063/1.1926272

  105. T.J. Lenosky, S.R. Bickham, J.D. Kress, L.A. Collins, Phys. Rev. B 61, 1 (2000), https://doi.org/10.1103/PhysRevB.61.1

  106. M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999), http://link.aip.org/link/JCPSA6/v110/i11/p5029/s1

  107. G. Kresse, J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996), https://doi.org/10.1103/PhysRevB.54.11169

  108. F. Furche, Phys. Rev. B 64, 195120 (2001)

    Article  Google Scholar 

  109. F. Furche, J. Chem. Phys. 129(11), 114105 (2008)

    Article  Google Scholar 

  110. H. Eshuis, J. Yarkony, F. Furche, The Journal of Chemical Physics 132(23), 234114 (2010), https://doi.org/10.1063/1.3442749

  111. H. Eshuis, J. Bates, F. Furche, Theoretical Chemistry Accounts 131(1), 1 (2012), https://doi.org/10.1007/s00214-011-1084-8

  112. F. Furche, Ann. Rev. Phys. Chem. 68(1) (2016)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award No. DE-FG02-08ER46496. J.C.S. acknowledges support through the NSF Graduate Research fellowship program under Award No. DGE-1321846.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin C. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, J.C., Sagredo, F., Burke, K. (2018). Warming Up Density Functional Theory. In: Wójcik, M., Nakatsuji, H., Kirtman, B., Ozaki, Y. (eds) Frontiers of Quantum Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-5651-2_11

Download citation

Publish with us

Policies and ethics