Skip to main content

Relativistic Time-Dependent Density Functional Theory for Molecular Properties

  • Chapter
  • First Online:
Book cover Frontiers of Quantum Chemistry

Abstract

In this review article, we introduce the two-component relativistic time-dependent density functional theory (TDDFT) with spin–orbit interactions to calculate linear response properties and excitation energies. The approach is implemented in the NTChem program. Our implementation is based on a noncollinear exchange–correlation potential presented by Wang et al. In addition, various DFT functionals including the range-separated hybrid functionals have been derived and implemented with the aid of a newly developed computerized symbolic algebra system. The two-component relativistic TDDFT with spin–orbit interactions was successfully applied to the calculation of the frequency-dependent polarizabilities of SnH4 and PbH4 molecules containing heavy atoms and the excitation spectra of a HI molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M. Marian, Wiley Interdiscip. Rev. Comput. Molecular Sci. 2, 187–203 (2012)

    Article  CAS  Google Scholar 

  2. Y. Imamura, M. Kamiya, T. Nakajima, Chem. Phys. Lett. 635, 152–156 (2015)

    Article  CAS  Google Scholar 

  3. Y. Imamura, M. Kamiya, T. Nakajima, Chem. Phys. Lett. 648, 60–65 (2016)

    Article  CAS  Google Scholar 

  4. M.E. Casida, M. Huix-Rotllant, Ann. Rev. Phys. Chem. 63, 287–323 (2012)

    Article  CAS  Google Scholar 

  5. C. Adamo, D. Jacquemin, Chem. Soc. Rev. 42, 845–856 (2013)

    Article  CAS  Google Scholar 

  6. A.D. Laurent, D. Jacquemin, Int. J. Quantum Chem. 113, 2019–2039 (2013)

    Article  CAS  Google Scholar 

  7. H. Weiss, R. Ahlrichs, M. Häser, J. Chem. Phys. 99, 1262–1270 (1993)

    Article  CAS  Google Scholar 

  8. R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454–464 (1996)

    Article  CAS  Google Scholar 

  9. R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8218–8224 (1998)

    Article  CAS  Google Scholar 

  10. P. Norman, D.M. Bishop, H.J. Aa. Jensen, J. Oddershede, J. Chem. Phys. 115, 10323–10334

    Google Scholar 

  11. K. Kristensen, J. Kauczor, T. Kjærgaard, P. Jørgensen, J. Chem. Phys. 131, 044112 (2009)

    Article  Google Scholar 

  12. M. Douglas, N.M. Kroll, Ann. Phys. (NY) 82, 89 (1974)

    Article  CAS  Google Scholar 

  13. B.A. Hess, Phys. Rev. A 32, 756 (1985)

    Article  CAS  Google Scholar 

  14. B.A. Hess, Phys. Rev. A 33, 3742 (1986)

    Article  CAS  Google Scholar 

  15. L.E. McMurchie, E.R. Davidson, J. Comput. Phys. 44, 289–301 (1981)

    Article  Google Scholar 

  16. R.M. Pitzer, N.W. Winter, Int. J. Quantum Chem. 40, 773–780 (1991)

    Article  CAS  Google Scholar 

  17. P. Norman, B. Schimmelpfennig, K. Ruud, H.J. Aa. Jensen, H. Ågren, J. Chem. Phys. 116, 6914–6923 (2002)

    Google Scholar 

  18. P. Salek, T. Helgaker, T. Saue, Chem. Phys. 311, 187–201 (2005)

    Article  CAS  Google Scholar 

  19. R. Bast, T. Saue, J. Henriksson, P. Norman, J. Chem. Phys. 130, 024109 (2009)

    Article  Google Scholar 

  20. F. Wang, T. Ziegler, J. Chem. Phys. 121, 12191–12196 (2004)

    Article  CAS  Google Scholar 

  21. J. Gao, W. Zou, W. Liu, Y. Xiao, D. Peng, B. Song, C. Liu, J. Chem. Phys. 123, 054102 (2005)

    Article  Google Scholar 

  22. F. Wang, T. Ziegler, J. Chem. Phys. 122, 074109 (2005)

    Article  Google Scholar 

  23. A. Nakata, T. Tsuneda, K. Hirao, J. Chem. Phys. 135, 224106 (2011)

    Article  Google Scholar 

  24. S. Hirata, M. Head-Gordon, Chem. Phys. Lett. 314, 291–299 (1999)

    Article  CAS  Google Scholar 

  25. R. Bast, H.J.A. Jensen, T. Saue, Int. J. Quantum Chem. 109, 2091–2112 (2009)

    Article  CAS  Google Scholar 

  26. T. Nakajima, M. Katouda, M. Kamiya, Y. Nakatsuka, Int. J. Quantum Chem. 115, 349–359 (2015)

    Article  CAS  Google Scholar 

  27. SymPy: Python library for symbolic mathematics. http://sympy.org

  28. J.A. Pople, R. Krishnan, H.B. Schlegel, J.S. Binkley, Int. J. Quantum Chem. 16, 225–241 (1979)

    Article  Google Scholar 

  29. P. Pulay, J. Chem. Phys. 78, 5043–5051 (1983)

    Article  CAS  Google Scholar 

  30. H. Sekino, R.J. Bartlett, J. Chem. Phys. 84, 2726–2733 (1986)

    Article  CAS  Google Scholar 

  31. E.R. Davidson, J. Comput. Phys. 17, 87–94 (1975)

    Article  Google Scholar 

  32. K. Hirao, H. Nakatsuji, J. Comput. Phys. 45, 246–254 (1982)

    Article  Google Scholar 

  33. J. Olsen, H.J. Aa. Jensen, P. Jørgensen, J. Comput. Phys. 74, 265–282 (1988)

    Google Scholar 

  34. R. Bast, U. Ekstrom, B. Gao, T. Helgaker, K. Ruud, A.J. Thorvaldsen, Phys. Chem. Chem. Phys. 13, 2627–2651 (2011)

    Article  CAS  Google Scholar 

  35. L. Nordström, D.J. Singh, Phys. Rev. Lett. 76, 4420–4423 (1996)

    Article  Google Scholar 

  36. T. Oda, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 3622–3625 (1998)

    Article  CAS  Google Scholar 

  37. S. Yamanaka, D. Yamaki, Y. Shigeta, H. Nagao, Y. Yoshioka, N. Suzuki, K. Yamaguchi, Int. J. Quantum Chem. 80, 664–671 (2000)

    Article  CAS  Google Scholar 

  38. P. Kurz, F. Förster, L. Nordström, G. Bihlmayer, S. Blügel, Phys. Rev. B 69, 024415 (2004)

    Article  Google Scholar 

  39. J.E. Peralta, G.E. Scuseria, J. Chem. Phys. 120, 5875–5881 (2004)

    Article  CAS  Google Scholar 

  40. J.E. Peralta, G.E. Scuseria, M.J. Frisch, Phys. Rev. B 75, 125119 (2007)

    Article  Google Scholar 

  41. M.K. Armbruster, F. Weigend, C. van Wullen, W. Klopper, Phys. Chem. Chem. Phys. 10, 1748–1756 (2008)

    Article  CAS  Google Scholar 

  42. G. Scalmani, M.J. Frisch, J. Chem. Theor. Comput. 8, 2193–2196 (2012)

    Article  CAS  Google Scholar 

  43. H. Sekino, J. Phys. Chem. A 104, 4685–4689 (2000)

    Article  CAS  Google Scholar 

  44. R.J. Harrison, J. Comput. Chem. 25, 328–334 (2004)

    Article  CAS  Google Scholar 

  45. S. Hirata, M. Head-Gordon, R.J. Bartlett, J. Chem. Phys. 111, 10774–10786 (1999)

    Article  CAS  Google Scholar 

  46. R. Strange, F.R. Manby, P.J. Knowles, Comput. Phys. Commun. 136, 310–318 (2001)

    Article  CAS  Google Scholar 

  47. P. Sałek, A. Hesselmann, J. Comput. Chem. 28, 2569–2575 (2007)

    Article  Google Scholar 

  48. U. Ekström, L. Visscher, R. Bast, A.J. Thorvaldsen, K. Ruud, J. Chem. Theor. Comput. 6, 1971–1980 (2010)

    Article  Google Scholar 

  49. J.P. Perdew, Burke K., Ernzerhof M., Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  50. J.C. Slater, Phys. Rev. 81, 385 (1951)

    Article  CAS  Google Scholar 

  51. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  CAS  Google Scholar 

  52. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  53. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  54. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  55. H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 115, 3540 (2001)

    Article  CAS  Google Scholar 

  56. T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51–57 (2004)

    Article  CAS  Google Scholar 

  57. V. Kellö, A.J. Sadlej, Theor. Chim. Acta. 94, 93–104 (1996)

    Google Scholar 

  58. A.J. Sadlej, Collect. Czech. Chem. Commun. 53, 1995 (1988)

    Article  CAS  Google Scholar 

  59. S. Kirpekar, J. Oddershede, Jensen HJrA. J. Chem. Phys. 103, 2983–2990 (1995)

    Article  CAS  Google Scholar 

  60. O.A. Vydrov, J. Heyd, A.V. Krukau, G.E. Scuseria, W.K, J. SL., J Chem. Phys. 125, 074106 (2006)

    Google Scholar 

  61. O.A. Vydrov, G.E. Scuseria, J. Chem. Phys. 125, 234109 (2006)

    Article  Google Scholar 

  62. O.A. Vydrov, G.E. Scuseria, J.P. Perdew, J. Chem. Phys. 126, 154109 (2007)

    Article  Google Scholar 

  63. T. Pluta, A.J. Sadlej, Chem. Phys. Lett. 297, 391–401 (1998)

    Article  CAS  Google Scholar 

  64. T. Nakajima, K. Hirao, M. Douglas, N.M. Kroll, J. Chem. Phys. 113, 7786–7789 (2000)

    Article  CAS  Google Scholar 

  65. J.C. Boettger, Phys. Rev. B 62, 7809–7815 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Next-Generation Supercomputer project (the K computer project) and the FLAGSHIP2020 project within the priority study5 (Development of new fundamental technologies for high-efficiency energy creation, conversion/storage, and use) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This work was also supported by FOCUS Establishing Supercomputing Center of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahito Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamiya, M., Nakajima, T. (2018). Relativistic Time-Dependent Density Functional Theory for Molecular Properties. In: Wójcik, M., Nakatsuji, H., Kirtman, B., Ozaki, Y. (eds) Frontiers of Quantum Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-5651-2_10

Download citation

Publish with us

Policies and ethics