Skip to main content

Zero Liquid Discharge in Desalination

  • Chapter
  • First Online:
Sustainable Membrane Technology for Water and Wastewater Treatment

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Global water stress, raw material depletion, environmental pollution, energy production, and consumption are already severe problems that our modern society have to solve and overcome for maintaining and increasing the quality of our life. Membrane engineering with its various operations is one of the disciplines more involved in the technological innovations necessary to face these strongly interconnected problems. In this work, the most interesting aspects of membrane engineering in water desalination are identified, not only for the production of freshwater but also for the production of energy and for the recovery of metals from the concentrated waste streams of the desalination plants. In particular, the potentialities of integrated membrane-based desalination processes with membrane distillation (MD)/membrane crystallization (MCr)/pressure-retarded osmosis/reverse electrodialysis units are described. Desalination processes designed in this way could become closed systems, exploiting seawater in order to approach zero liquid discharge (ZLD), or near ZLD, and total raw materials utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Progress on drinking water and sanitation 2014 update. World Health Organization and UNICEF 2014.ISBN 978 92 4 150724 0. Available online: http://www.wssinfo.org/fileadmin/user_upload/resources/JMP_report_2014_webEng.pdf. Last access on 13 Apr 2015

  2. Rühl C, Appleby P, Fennema J, Naumov A, Schaffer M (2012) Economic development and the demand for energy: a historical perspective on the next 20 years. Energy Policy 50:109–116

    Article  Google Scholar 

  3. Gabriel S, Baschwitz A, Mathonnière G, Fizaine F, Eleouet T (2013) Building future nuclear power fleets: the available uranium resources constraint. Resour Policy 38(4):458–469

    Article  Google Scholar 

  4. http://www.sciencearchive.org.au/nova/newscientist/027ns_005.htm. Available online. Last access on 16 May 2016

  5. Drioli E, Stankiewicz AI, Macedonio F (2011) Membrane engineering in process intensification—an overview. J Memb Sci 380:1–8

    Article  CAS  Google Scholar 

  6. Van Gerven T, Stankiewicz A (2009) Structure, energy, synergy, time—the fundamentals of process intensification. Ind Eng Chem Res 48:2465–2474

    Article  Google Scholar 

  7. Van der Bruggen B, Braeken L (2006) The challenge of zero discharge: from water balance to regeneration. Desalination 188(1–3):177–183

    Article  Google Scholar 

  8. Jeppesen T, Shu L, Keir G, Jegatheesan V (2009) Metal recovery from reverse osmosis concentrate. J Clean Prod 17:703–707

    Article  CAS  Google Scholar 

  9. Lattemann S, Höpner T (2008) Environmental impact and impact assessment of seawater desalination. Desalination 220:1–15

    Article  CAS  Google Scholar 

  10. Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R, Kurihara M (2012) Efficient technologies for worldwide clean water supply. Chem Eng Process 51:2–17

    Article  CAS  Google Scholar 

  11. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43(9):2317–2348

    Article  CAS  Google Scholar 

  12. Global Water Intelligence (GWI/IDA DesalData). Market profile and desalination markets, 2009–2012 yearbooks and GWI website, 2013, http://www.desaldata.com/. Last access: May 2014

  13. Bernardo P, Drioli E (2010). Membrane gas separation progresses for process intensification strategy in the petrochemical industry. Pet Chem 271–282

    Google Scholar 

  14. Koros WJ (2007) Editorial. Three hundred volumes. J Membr Sci 300

    Google Scholar 

  15. Brauns E (2009) Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output. Desalination 237:378–391

    Article  CAS  Google Scholar 

  16. Schiermeier Q (2008) Water: purification with a pinch of salt. Nature 452(7185):260–261

    Article  CAS  Google Scholar 

  17. MacHarg J, Seacord TF, Sessions B (2008) ADC baseline tests reveal trends in membrane performance. Desalin Water Reuse 18:30–39

    Google Scholar 

  18. Fritzmann C, Löwenberg J, Wintgens T, Melin T (2007) State-of-the-art of reverse osmosis desalination. Desalination 216(1):1–76

    Article  CAS  Google Scholar 

  19. Drioli E, Curcio E, Criscuoli A, Di Profio G (2004) Integrated system for recovery of CaCO3, NaCl and MgSO4·7H2O from nanofiltration retentate. J Membr Sci 239(1):27–38

    Article  CAS  Google Scholar 

  20. Di Profio G, Tucci S, Curcio E, Drioli E (2007) Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des 7:526–530

    Article  Google Scholar 

  21. Drioli E, Di Profio G, Curcio E (2012) Progress in membrane crystallization. Curr opin chem eng 1(2):178–182

    Article  CAS  Google Scholar 

  22. Macedonio F, Drioli E (2010) Hydrophobic membranes for salts recovery from desalination plants. Desalination Water Treat 18:224–234

    Article  CAS  Google Scholar 

  23. Drioli E, Criscuoli A, and Curcio E (2006) Membrane contactors: fundamentals, applications and potentialities: fundamentals, applications and potentialities. vol 11. Elsevier, Amsterdam

    Google Scholar 

  24. Macedonio F, Curcio E, Drioli E (2007) Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination 203(1):260–276

    Article  CAS  Google Scholar 

  25. Macedonio F, Drioli E (2011) Integrated system configuration, chapter 8 in membrane-based desalination: an integrated approach. In: Drioli E, Criscuoli A, Macedonio F (eds) IWA Publishing. ISBN: 9781843393214

    Google Scholar 

  26. Ali A, Macedonio F, Drioli E, Aljlil S, Alharbi OA (2013) Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation. Chem Eng Res Des 91(10):1966–1977

    Article  CAS  Google Scholar 

  27. Tun CM, Fane AG, Matheickal JT, Sheikholeslami R (2005) Membrane distillation crystallization of concentrated salts—flux and crystal formation. J Membr Sci 257(1):144–155

    Article  CAS  Google Scholar 

  28. Kurihara M, Hanakawa M (2013) Mega-ton water system: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 308:131–137

    Article  CAS  Google Scholar 

  29. Kim S, Oh BS, Hwang MH, Hong S, Kim JH, Lee S, Kim IS (2011) An ambitious step to the future desalination technology: SEAHERO R&D program (2007–2012). Appl Water Sci 1(1–2):11–17

    Article  Google Scholar 

  30. www.globalmvp.org. Last access on 28 Jan 2016

  31. Post JW, Veerman J, Hamelers HV, Euverink GJ, Metz SJ, Nymeijer K, Buisman CJ (2007) Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis. J Membr Sci 288(1):218–230

    Article  CAS  Google Scholar 

  32. Skilhagen SE (2010) Osmotic power—a new, renewable energy source. Desalin Water Treat 15(1–3):271–278

    Article  Google Scholar 

  33. Li W, Krantz WB, Cornelissen ER, Post JW, Verliefde AR, Tang CY (2013) A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Appl Energy 104:592–602

    Article  CAS  Google Scholar 

  34. http://www.reapower.eu/project-scope/-project-scope.html. Last access on 27 Jan 2016

  35. REDSTACK. Available online at http://www.wetsalt.nl/participanten.htm. Last access on 16 May 2016

  36. Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207

    Article  CAS  Google Scholar 

  37. Drioli E, Lagana F, Criscuoli A, Barbieri G (1999) Integrated membrane operations in desalination processes. Desalination 122(2):141–145

    Article  CAS  Google Scholar 

  38. Ohta K, Kikuchi K, Hayano I, Okabe T, Goto T, Kimura S, Ohya H (1990) Experiments on sea water desalination by membrane distillation. Desalination 78(2):177–185

    Article  CAS  Google Scholar 

  39. Drioli E, Criscuoli A, Curcio E (2002) Integrated membrane operations for seawater desalination. Desalination 147(1):77–81

    Article  CAS  Google Scholar 

  40. Macedonio F, Ali A, Poerio T, El-Sayed E, Drioli E, Abdel-Jawad M (2014) Direct contact membrane distillation for treatment of oilfield produced water. Sep Purif Technol 126:69–81

    Article  CAS  Google Scholar 

  41. Ali A, Quist-Jensen CA, Macedonio F, Drioli E (2015) Application of membrane crystallization for minerals’ recovery from produced water. Membranes 5(4):772–792

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Macedonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Macedonio, F., Drioli, E. (2017). Zero Liquid Discharge in Desalination. In: Figoli, A., Criscuoli, A. (eds) Sustainable Membrane Technology for Water and Wastewater Treatment. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5623-9_8

Download citation

Publish with us

Policies and ethics