Skip to main content

Process Intensification: Definition and Application to Membrane Processes

  • Chapter
  • First Online:
Book cover Sustainable Membrane Technology for Water and Wastewater Treatment

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The main ways of intensification of membrane processes were classified into three groups. In the first group those methods, which depend on the selection of the type of the membrane in terms of material and microstructure, were described. The second group includes information relating to concentration polarization, which is always present in membrane separation processes. In practice, the occurrence of concentration polarization exerts even more distinct effect than resistance of the membrane itself with respect to performance. Reduction of the concentration polarization allows greater permeate flux but requires additional actions and additional energy. The third way of the intensification of membrane processes is to design a suitable configuration, i.e., the selection of membrane modules and their connections. The most spectacular way of process intensification of separation is the use of modern hybrid processes, which are discussed later in this chapter.

The original version of this chapter was revised: Belated corrections have been incorporated. The erratum to this chapter is available at https://doi.org/10.1007/978-981-10-5623-9_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Surface area [m2]

A :

Accumulation at Eqs. 3.19 and 3.20 [s−1]

C :

Concentration [kg m−3]

CF:

Concentration factor (CF = C R /C F ) [−]

D :

Diffusion coefficient [m2 s−1]

d :

Diameter [m]

f :

Age function [–]

J :

Volumetric permeate flux [m3 m−2s−1]

J i :

Mass permeate flux for ith component [kg m−2 s−1]

J(t):

Instantaneous flux [m3 m−2 s−1]

j :

By-pass ratio (j = m b /m F ) [−]

K :

Permeability factor [kg m−1 s−1 bar−1]

k :

Boltzmann constant (1.38064852 × 10−23) [m2 kg s−2 K−1]

k :

Constant in Hermia’s Eq. 3.3. [−]

k :

Mass transport coefficient (overall) [m/s]

l :

Thickness of the membrane [m]

M :

Molecular mass [kg/kmol]

m :

Mass flow rate [kg/s]

m :

The ratio of dry mass to the wet mass [−]

n :

Constant in Hermia’s equation Eq. 3.21 [−]

n :

Circulation ratio (n = m c /m R ) [−]

P :

Pressure [bar]

Q :

Volumetric flow rate [m3 s−1]

R :

Universal gas constant (8.314459848) [J K−1 mol−1]

R :

Volumetric flow resistance [bar s m−1]

r :

Pore radius [m]

R :

Retention coefficient [−]

RC:

Recovery factor (RC = mP/mF) [–]

Re :

Reynolds number (Re = udρ/μ) [−]

S :

Solubility factor (S = ΔCP) [kg m−3 bar]

s :

Rate of surface renewal (by Danckwerts) [m s−1]

Sh :

Sherwood number (Sh = k d/D) [−]

Sc :

Schmidt number (Sc = µ/) [−]

T :

Temperature [K]

t :

Time [s]

U :

Electrical potential [V]

u :

Velocity [m s−1]

V :

Volume [m3]

α :

Specific resistance of the cake [−]

γ :

Shear rate [s−1]

δ :

Thickness of the boundary layer [m]

η :

Viscosity [kg m−1 s−1]

ϕ :

Solid fraction in suspension [−]

λ :

Mean free path of molecules [m]

μ :

Chemical potential [J mol−1]

π :

Osmotic pressure [bar]

ρ :

Density [kg m−3]

ψ :

The shape constant [-]

A:

Component A

crit:

Critical (flux)

c:

Cleaning (time)

drag:

Drag (force)

F:

Feed

G:

Gel

lift:

Lifting (force)

p:

Process (time)

P:

Permeate

R:

Retentate

W:

Wall

References

  1. Ramshaw C (1995) The incentive for process intensification. In: Proceedings, 1st International conference on proceedings of intensification for chemical indusrtry, 18, BHR Group, London

    Google Scholar 

  2. Reay D, Ramshaw C, Harvey A (2008) Process Intensification, engineering for efficiency, sustainability and flexibility. Elsevier, London

    Google Scholar 

  3. Stankiewicz AI, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Engin Progress Des Trends. 22–31

    Google Scholar 

  4. Dautzenberg FM, Mukherjee M (2001) Chemical engineering science. In: 16th International Conference on Chemical Reactor Engineering, vol 56(2), pp 251–267

    Google Scholar 

  5. Boodhoo K, Harvey A (2013) Process intensification technologies for green chemistry: engineering solutions for sustainable chemical processing. Wiley, London

    Google Scholar 

  6. Lutze P, Gani R, Woodley JM (2010) Process intensification: a perspective on process synthesis. Chem Eng Process 49(6):547–558

    Article  CAS  Google Scholar 

  7. Criscuoli A, Drioli E (2007) New metrics for evaluating the performance of membrane operations in the logic of process intensification. Ind Eng Chem Res 46(8):2268–2271

    Article  CAS  Google Scholar 

  8. Mohunta DM (2015) Commercial, Chemical and Dev. Co, Shenoy Nagar, Chennai - 600030, Tamilnadu, India. http://www.ccdcindia.com/index2.php?act=contact

  9. Koltuniewicz AB, Drioli E (2009) Membranes in clean technologies—theory and practice, vol 1/2. Wiley, Weinheim

    Google Scholar 

  10. Directive IPPC (2003) Directive on integrated pollution prevention and control (). Office for Official Publications of the European Communities, Luxembourg. ISBN 92-894-6020-2

    Google Scholar 

  11. IPPC Directive (2004) Industrial pollution, European solutions: clean technologies

    Google Scholar 

  12. Kuiper S, van Wolferen H, van Rijn C, Nijdam W, Krijnen G, Elwenspoek M (2001) Fabrication of microsieves with sub-micron pore size by laser interference lithography. J Micromech Microeng 11(1):306–319

    Article  Google Scholar 

  13. Borgnia M, Nielsen S, Engel A, Agre P (2000) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    Article  Google Scholar 

  14. Mehdizadeh H, Dickson JM (1991) Theoretical modification of the finely porous model for reverse osmosis transport. J Appl Polym Sci 42(4):1143–1154

    Article  CAS  Google Scholar 

  15. Kucera J (2010) Reverse osmosis: design, processes, and applications for engineers. Wiley, Weinheim

    Google Scholar 

  16. Koltuniewicz AB (1994) Dynamic properties of ultrafiltration systems in light of the surface renewal theory. Ind Eng Chem Res 33(7):1771–1779

    Article  CAS  Google Scholar 

  17. Koltuniewicz AB (2014) Sustainable process engineering—prospects and opportunities. de Gruyter, Berlin

    Google Scholar 

  18. Danckwerts PV (1951) Significance of liquid-film coefficients in gas absorption. Ind Eng Chem 43(6):1460–1467

    Article  CAS  Google Scholar 

  19. Koltuniewicz AB (1996) The yield of pressure-driven membrane processes in the light of the surface renewal theory (book in Polish). Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw

    Google Scholar 

  20. Koltuniewicz AB et al (1995) Method of yield evaluation for pressure-driven membrane processes. Chem Eng J 58(2):175–182

    CAS  Google Scholar 

  21. Hermia J (1982) Constant pressure blocking filtration laws-application to power-law non-newtonian fluids. Trans IChemE 60:183–187

    CAS  Google Scholar 

  22. Koltuniewicz AB, Field RW (1996) Process factors during removal of oil-in-water emulsions with cross-flow microfiltration. Desalination 105:79–89

    Article  CAS  Google Scholar 

  23. Koltuniewicz AB, Field RW, Arnot TC (1995) Cross-flow and dead-end microfiltration of oily-water emulsion. Part I: experimental study and analysis of flux decline. J Membr Sci 102:193–207

    Article  CAS  Google Scholar 

  24. Koltuniewicz AB (2012) Submerged membrane. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin

    Google Scholar 

  25. Koltuniewicz AB (2012) Submerged membrane bioreactors. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin

    Google Scholar 

  26. Koltuniewicz AB (2010) Integrated membrane operations in various industrial sectors. In: Drioli E, Giorno L (eds) Membrane science and engineering. Elsevier, pp 109–154

    Google Scholar 

  27. Sobieszuk P, Zamojska-Jaroszewicz A, Kołtuniewicz AB (2012) Harvesting energy and hydrogen from microbes. Chem. Process Eng 33(4):603–610

    CAS  Google Scholar 

  28. http://www.sksl.co.jp/en/our-services/industrial/epc/MEMCOR-CMF/. Accessed 28 Jan 2016

  29. http://www.berkefeld.com/en/news_media/press_releases/2013-08-02,berkefeld_drinktec_2013_hygienic_design_and_membrane-biofouling_protection.htm. Accessed 28 Jan 2016

  30. Ileri N, Faller R, Palazoglu A, Létant SE, Tringe JW, Stroeve P (2013) Molecular transport of proteins through nanoporous membranes fabricated by interferometric lithography. Phys Chem Chem Phys 15:965–971

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Benedykt Koltuniewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Koltuniewicz, A.B. (2017). Process Intensification: Definition and Application to Membrane Processes. In: Figoli, A., Criscuoli, A. (eds) Sustainable Membrane Technology for Water and Wastewater Treatment. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5623-9_3

Download citation

Publish with us

Policies and ethics