Skip to main content

Abstract

This chapter presents an overview of the current state of the art concerning the application of life cycle assessment (LCA) to assess and improve the environmental performance and sustainability of processes that use or are based on membrane technologies. A presentation of the LCA methodology is made, based on the current framework defined by the ISO Standard, focusing on the main aspects and how LCA can be applied to a given product or process system. A review of the available studies was done for membrane based or systems in which membranes have an important role, focusing in water treatment process, either for human and industrial application or wastewater treatment. The analysis shows that the application of LCA is still limited in membrane process, and more work still needs to be done, for example, taking into account the manufacture and final disposal/recycling of the membranes and their corresponding process modules, and to properly asses how membranes may increase the sustainability of existing processes by replacing existing technologies with larger environmental impact. As the need to evaluate the environmental impact and sustainability of new processes increases, the application of the LCA methodology will become more common both in process design and/or process operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNSDG (2017) United Nations sustainable development goals. http://www.un.org/sustainabledevelopment/. Accessed 25 Apr 2017

  2. CEU (2006) Review of the EU sustainable development strategy (EU SDS): renewed strategy. Council of the European Union

    Google Scholar 

  3. EC (2010) EUROPE 2020—A strategy for smart, sustainable and inclusive growth. Communication from the Commission, European Commission

    Google Scholar 

  4. US DOE (2012) Membrane technology workshop summary report. Advanced Manufacturing Office

    Google Scholar 

  5. Mulder M (1996) Basic principles of membrane science, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  6. Nunes SP, Peinemann K (2006) Membrane technology in the chemical industry, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  7. Cui ZF, Muralidhara HS (2010) Membrane technology—a practical guide to membrane technology and applications in food and bioprocessing. IChemE, Butterworth-Heinemann, Amsterdam

    Google Scholar 

  8. Drioli E, Giorno L (2016) Encyclopaedia of membranes. Springer, Berlin

    Google Scholar 

  9. Buonomenna MG (2013) Membrane processes for a sustainable industrial growth. RSC Adv 3:5694–5740

    Article  CAS  Google Scholar 

  10. Drioli E, Fontananova E (2012) Membrane materials for addressing energy and environmental challenges. Annu Rev Chem Biomol Eng 3:240–395

    Article  Google Scholar 

  11. Marcano JG, Tsotsis TT (2002) Catalytic membranes and catalytic membranes. Wiley-VCH, Weinheim

    Google Scholar 

  12. Drioli E, Barbieri G (2011) Membrane engineering for the treatment of gases. Volume 2: Gas-separation problems combined with membrane reactors, RSC Publishing, Cambridge

    Google Scholar 

  13. Rios GM, Belleville MP, Paolucci-Jeanjean D, Sanchez J (2009) Chapter 4: membrane technologies at the service of sustainable development through process intensification. In: Fabrizio C, Gabriele C, Siglinda P, Ferruccio T (eds) Sustainable industrial processes. Wiley-VCH, Weinheim

    Google Scholar 

  14. IPPC (2000) Reference document on best available techniques in the Chlor-Alkali manufacturing industry. Integrated Pollution Prevention and Control

    Google Scholar 

  15. Basile A, Nunes S (2011) Advanced membrane science and technology for sustainable energy and environmental applications. Woodhead Publishing, Cambridge

    Google Scholar 

  16. Ismail AF, Matsuura T (2012) Sustainable membrane technology for energy, water and environment. Wiley, Hoboken

    Book  Google Scholar 

  17. Drioli E, Romano M (2001) Progress and new perspectives on integrated membrane operations for sustainable industrial growth. Ind Eng Chem Res 40:1277–1300

    Article  CAS  Google Scholar 

  18. Sirkar KK, Fane AG, Wang A, Wickramasinghe SR (2015) Process intensification with selected membrane process. Chem Eng Process Process Intensif 87:16–25

    Google Scholar 

  19. Mazzei R, Piacentini E, Drioli E, Giorno L (2013a) Membrane bioreactors for green processing in a sustainable production system. In: Boodhoo K, Harvey A (eds) Process intensification for green chemistry: engineering solutions for sustainable chemical processing. Wiley, Hoboken

    Google Scholar 

  20. Mazzei R, Piacentini E, Drioli E, Giorno L (2013b) Membrane separations for green chemistry. In: Boodhoo K, Harvey A (eds) Process intensification for green chemistry: engineering solutions for sustainable chemical processing, Wiley, Hoboken

    Google Scholar 

  21. Wrisberg N, Udo de Haes HA, Trieswetter U, Eder P, Clift R (2002) Analytical tools for environmental design and management in a systems perspective the combined use of analytical tools. Springer, Berlin

    Google Scholar 

  22. McManusm M, Taylor C (2015) The changing nature of life cycle assessment. Biomass Bioenergy 82:13–26

    Article  Google Scholar 

  23. Guinée J, Heijnungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45:90–96

    Article  Google Scholar 

  24. Mata TM, Costa CAV (2001) Life cycle assessment of different reuse percentages for glass beer bottles. Int J LCA 6(5):307–319

    Article  CAS  Google Scholar 

  25. Mata TM, Smith RL, Costa CAV (2005) Environmental analysis of gasoline blending components through their life cycle. J Clean Prod 13:517–523

    Article  Google Scholar 

  26. ISO 14040 (2006a) Environmental management—life cycle assessment—principles and framework

    Google Scholar 

  27. ISO 14044 (2006b) Environmental management—life cycle assessment—requirements and guidelines

    Google Scholar 

  28. Bauman H, Tilman A (2004) The Hitch Hiker’s Guide to LCA—an orientation in LCA methodology and application. Studentlitteratur AB, Sweden

    Google Scholar 

  29. Klopffer W, Grahl B (2014) Life cycle assessment (LCA): a guide to best practice. Wiley-VCH, Weinheim

    Google Scholar 

  30. Matthews HS, Hendrickson CT, Matthews DH (2015) Life cycle assessment: quantitative approaches for decisions that matter. http://www.lcatextbook.com

  31. Curran MA (2016) Goal and scope definition in life cycle assessment. In: Klöpffer W, Curan MA (eds) LCA compendium—the compete world of life cycle assessment. Springer, Berlin

    Google Scholar 

  32. Weidema B, Wenzel HH, Petersen C, Hansen K (2004) The product, functional unit and reference flows in LCA. Environmental News 70, Environmental Protection Agency, Danish Ministry of the Environment

    Google Scholar 

  33. JRC (2011) ILCD handbook—recommendation for life cycle impact assessment in the European Context. Joint Research Center

    Google Scholar 

  34. Renouf MA, Grant T, Sevenster M, Logie L, Ridout B, Ximenes F, Bengston J, Cowie A, Lane J (2015) Best practice guide for life cycle impact assessment (LCIA) In Australia. Version 2—Draft for Consultation, ALCAS—Australian Life Cycle Assessment Society

    Google Scholar 

  35. Hauschild MZ, Huibregts MAJ (2015) Life cycle impact assessment. In: Klöpffer W, Curan MA (eds) LCA compendium—the complete world of life cycle assessment. Springer, Berlin

    Google Scholar 

  36. Morais S, Martins AA, Mata TM (2010) Comparison of allocation approaches in soybean biodiesel life cycle assessment. J Energy Inst 83(1):48–55

    Article  CAS  Google Scholar 

  37. Guiné JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A, Oers L, Sleeswijk AW, Suh S, Udo de Haes HA, Bruijn H, Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, Weidema BP (2004) Handbook on life cycle assessment operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  38. IPCC (2013) Climate change. The physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  39. Weidema B (2011) Ecoinvent database version 3—the practical implications of the choice of system model. LCA, Berlin, Germany

    Google Scholar 

  40. Katelhon A, Assen N, Suh S, Jung J, Bardow (2015) A industry-cost-curve approach for modeling the environmental impact of introducing new technologies in life cycle assessment. Environ Sci Technol 49:7543–7551

    Google Scholar 

  41. UNEP (2009) Life cycle initiative. Guidelines for social life cycle assessment of products, United Nations Environment Programme

    Google Scholar 

  42. Sala S, Vasta A, Mancini L, Dewulf J, Rosenbaum E (2015) Social life cycle assessment. State of the art and challenges for supporting product policies. JRC Technical Reports

    Google Scholar 

  43. Hunkeler D, Litchvort Rebitzer G (2008) Environmental life cycle costing. SETAC

    Google Scholar 

  44. UNEP (2011) Life cycle initiative. Towards a life cycle sustainability assessment. Making informed choices on products

    Google Scholar 

  45. UNEP (2012) Life cycle initiative. Greening the economy through life cycle thinking, United Nations Environment Programme

    Google Scholar 

  46. JRC (2011) Supporting environmentally sound decisions for waste management. A technical guide to Life Cycle Thinking (LCT) and Life Cycle Assessment for waste experts and LCA practitioners. Joint Research Center Scientific and Technical Reports

    Google Scholar 

  47. Sustainable Materials Management Coalition (2014) Guidance on life-cycle thinking and its role in environmental decision making. https://www.michaeldbaker.com/wp-content/uploads/2014/03/Guidance-on-Life-Cycle-Thinking-031014.pdf

  48. Smith RL, Mata TM, Young DM, Cabezas H, Costa CAV (2001) Designing efficient, economic and environmentally friendly chemical processes. Comput Aided Chem Eng 9(C):1165–1170

    Google Scholar 

  49. Smith RL, Mata TM, Young DM, Cabezas H, Costa CAV (2004) Designing environmentally friendly chemical processes with fugitive and open emissions. J Clean Prod 12:125–129

    Article  Google Scholar 

  50. Morais S, Mata TM, Ferreira E (2010) Life cycle assessment of soybean biodiesel and LPG as automotive fuels in Portugal. Chem Eng Trans 19:267–272. doi:10.3303/CET1019044

    Google Scholar 

  51. Piccino F, Hishier R, Seeger S, Som C (2016) From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J Clean Prod 135:1085–1097

    Article  Google Scholar 

  52. Azapagic A (1999) Life cycle assessment and its application to process selection, design and optimization. Chem Eng J 73:1–21

    Google Scholar 

  53. Burgess AA, Brennan DJ (2001) Application of life cycle assessment to chemical processes. Chem Eng Sci 56:2589–2604

    Article  CAS  Google Scholar 

  54. Jacquemin L, Pontalier P, Sablayrolles C (2012) Life cycle assessment (LCA) applied to the process industry: a review. Int J Life Cycle Assess 17:1028–1041

    Article  CAS  Google Scholar 

  55. Pennington DW, Norris G, Hoagland T, Bare J (2000) Environmental comparison metrics for life cycle impact assessment and process design. Environ Prog 19:83–91

    Article  CAS  Google Scholar 

  56. Sugiyama H, Mendivil R, Fischer U, Hungerbuhler K, Hirao M (2008) Decision framework for chemical process design including different stages of environmental, health, and safety assessment. AIChE J 54:1037–1053

    Article  CAS  Google Scholar 

  57. Guillen-Golsábez G, Caballero JA, Jimenez L (2008) Application of life cycle assessment to the structural optimization of process flowsheets. Ind Eng Chem Res 47:77–789

    Google Scholar 

  58. Patel A, Meesters K, Uil H, Jomg E, Blok K, Patel MK (2012) Sustainability assessment of novel chemical processes at early stage: application to biobased processes. Energy Environ Sci 5:8430–8444

    Article  CAS  Google Scholar 

  59. Amelio A, Genduso G, Vreysen S, Luiscand P, Bruggen B (2014) Guidelines based on life cycle assessment for solvent selection during the process design and evaluation of treatment alternatives. Green Chem 16:3045–3063

    Article  CAS  Google Scholar 

  60. Kniel GE, Delmarco K, Petrie JG (1996) Life cycle assessment applied to process design: environmental and economic analysis and optimization of a nitric acid plan. Environ Prog 15:221–228

    Article  CAS  Google Scholar 

  61. Kalkeren H, Blom AL, Rutjes FPJT, Huijbregts MA (2013) On the usefulness of life cycle assessment in early chemical methodology development: the case of organophosphorus-catalyzed Appel and Wittig reactions. Green Chem 15:1255–1263

    Article  Google Scholar 

  62. Dizdar E, Dizdar A, Çiner F, Saglamtimur ND, Dizdar C, Downey A (2014) Drink purified H2O, a guide for the drinking water treatment plants, ERASMUS + Project No: 2014-1-TR01-KA202-013113. Pure-H2O Implementation of ECVET for qualification design in drinking water treatment plants and sanitation for pure drinkable water. http://pure-h2o-learning.eu/book-al

  63. Voutchkov N (2013) Desalination engineering. Planning and design. Mc-Graw Hill, New York

    Google Scholar 

  64. Marim D (2012) Chapter 2. LCA in drinking water treatment. In: Comas J, Morera S, Quadrens de Medi Abiemti (eds) Life cycle assessment and water management issues

    Google Scholar 

  65. Raluy RG, Serra L, Uche J (2005) Life cycle assessment of water production technologies part 1: life cycle assessment of different commercial desalination technologies (MSF, MED, RO). Int J Life Cycle Assess 10:285–293

    Article  CAS  Google Scholar 

  66. Raluy G, Serra L, Uche J (2006) Life cycle assessment of MSF, MED and RO desalination technologies. Energy 31:2361–2372

    Article  CAS  Google Scholar 

  67. Hancock NT, Black ND, Cath TY (2012) A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes. Water Res 46:1145–1154

    Article  CAS  Google Scholar 

  68. Tarnacki KM, Mellin T, Jansen AE, Medevoort J (2011) Comparison of environmental impact and energy efficiency of desalination processes by LCA. Water Sci Technol Water Supply 11(2):246–251

    Article  CAS  Google Scholar 

  69. Friedrich E (2002) Life-cycle assessment as an environmental management tool in the production of potable water. Water Sci Technol 9:29–36

    Google Scholar 

  70. Biswas K (2009) Life cycle assessment of seawater desalinization in Western Australia. Int J Environ Ecol Geol Geophys Eng 3:231–237

    Google Scholar 

  71. Bonton A, Bouchard C, Barbeau B, Jedzrejak S (2012) Comparative life cycle assessment of water treatment plants. Desalination 284:42–54

    Article  CAS  Google Scholar 

  72. Stokes J, Horvarth A (2006) Life cycle energy assessment of alternative water supply systems. Int J Life Cycle Assess 11:335–343

    Article  Google Scholar 

  73. Holloway R, Miller-Robbie L, Patel M, Stokes JR, Munakata-Marr J, Dadakis J, Cath TY (2016) Life-cycle assessment of two potable water reuse technologies: MF/RO/UV–AOP treatment and hybrid osmotic membrane bioreactors. J Membr Sci 507:165–178

    Article  CAS  Google Scholar 

  74. Jijakli K, Arafat H, Kennedy S, Mande P, Theeyattuparampil VV (2012) How green solar desalination really is? Environmental assessment using life-cycle analysis (LCA) approach. Desalination 287:123–131

    Article  CAS  Google Scholar 

  75. Garfí M, Cadena E, Sanchez-Ramos D, Ferrer I (2016) Life cycle assessment of drinking water: comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles. J Clean Prod 137:997–1003

    Article  Google Scholar 

  76. Igos E, Dalle A, Tiruta-Barna L, Benetto E, Baudin I, Mery Y (2015) Life cycle assessment of water treatment: what is the contribution of infrastructure and operation and unit process level. J Clean Prod 65:424–431

    Google Scholar 

  77. Raluy RG, Serra L, Uche J, Valero A (2005) Life cycle assessment of water production technologies part 2: reverse osmosis desalination versus the Ebro River water transfer. Int J Life Cycle Assess 10:346–354

    Article  CAS  Google Scholar 

  78. Vince F, Aoustin E, Bréant P, Marechal F (2008) LCA tool for the environmental evaluation of potable water production. Desalination 220:37–56

    Article  CAS  Google Scholar 

  79. Ras C, Bolttniz H (2012) A comparative life cycle assessment of process water treatment technologies at the Secunda industrial complex, South Africa. Water SA 38:549–554

    Article  CAS  Google Scholar 

  80. Ribera G, Clarens F, Martinez-Lladó X, Jubany I, Marti V, Rovira M (2014) Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants. Sci Total Environ 466–467:377–386

    Article  Google Scholar 

  81. Barjoveanu G, Comandaru IM, Teodosiu C (2010) Life cycle assessment of water and wastewater treatment systems: an overview. Buletinul Intitutuolui Politehnic Din Iasi 4

    Google Scholar 

  82. Gude VG (2016) Desalination and sustainability-an appraisal and current perspective. Water Desalin 89:87–106

    CAS  Google Scholar 

  83. Zhou J, Chang VWC, Fane AG (2014) Life cycle assessment for desalination: a review on methodology feasibility and reliability. Water Res 61:210–223

    Article  CAS  Google Scholar 

  84. Manda BM, Worrel E, Patel MK (2014) Innovative membrane filtration system for micropollutant removal from drinking water—prospective environmental LCA and its integration in business decisions. J Clean Prod 72:153–166

    Article  CAS  Google Scholar 

  85. Lawler W, Bardford-Hartke Z, Cran MJ, Duke M, Leslie G, Ladewig BP, Le-Clech P (2012) Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes. Desalination 299:103–112

    Article  CAS  Google Scholar 

  86. Lawler W, Gaitan J, Leslie G, Clech P (2015) Comparative life cycle assessment of end-of-life options for reverse osmosis membranes. Desalination 37:45–54

    Article  Google Scholar 

  87. Vince F, Marechal F, Aoustin E, Bréant P (2008) Multi-objective optimization of RO desalination plants. Desalination 222:96–118

    Article  CAS  Google Scholar 

  88. Mery Y, Tiruta-Barna L, Benetto E, Baudin I (2013) An integrated “process modelling-life cycle assessment” tool for the assessment and design of water treatment processes. Int J Life Cycle Assess 18:1062–1070

    Article  CAS  Google Scholar 

  89. Ahmadi A, Tiruta-Barna L (2015) A process modelling-life cycle assessment-multiobjective optimization tool for the eco-design of conventional treatment processes of potable water. J Clean Prod 100:116–125

    Article  Google Scholar 

  90. Loubet P, Roux P, Bellon-Maurel V (2016) WaLA a versatile model for the life cycle assessment of urban water systems: formalism and framework for a modular approach. Water Res 88:69–82

    Article  CAS  Google Scholar 

  91. Loubet P, Roux P, Guérrin-Schneider L, Bellon-Maurel V (2016) WaLA life cycle assessment of forecasting scenarios for urban water management: a first implementation of the WaLA model on Paris suburban area. Water Res 90:128–140

    Article  CAS  Google Scholar 

  92. Beery M, Repke J (2010) Sustainability analysis of different SWRO pre-treatment alternatives. Desalin Water Treat 16:218–228

    Article  CAS  Google Scholar 

  93. Hospido A, Rodriguez-Garcia G, Moreira MT, Feijoo G (2012) Chapter 3. LCA. In: Comas J, Morera S, Quadrens de Medi Abiemti 4 (eds) Wastewater treatment: conventional systems

    Google Scholar 

  94. Pinnekamp J, Friedrich H (2006) Municipal water and waste management volume 2: membrane technology for waste water treatment. AW Verlag. http://www.fiw.rwth-aachen.de/neo/index.php?id=386

  95. Hai F, Yamamoto K, Lee C-H (2014) Membrane biological reactors theory, modeling, design, management and applications to wastewater reuse. IWA Publishing, London

    Google Scholar 

  96. Judd S, Jefferson B (2003) Membranes for industrial wastewater recovery and re-use. Elsevier, Amsterdam

    Google Scholar 

  97. Memon FA, Zheng Z, Butler D, Shirley-Smith C, Lui S, Makropoulos C, Avery L (2007) Life cycle impact assessment of greywater recycling technologies for new developments. Environ Monit Impact Assess 129:27–35

    Article  CAS  Google Scholar 

  98. Ortiz M, Raluy RG, Serra L, Uche J (2007) Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town. Desalination 204:121–131

    Article  CAS  Google Scholar 

  99. Coday BD, Miller-Robbie L, Beaudry EG, Munakata-Marr J, Cath TY (2015) Life cycle and economic assessments of engineered osmosis and osmotic dilution for desalination of Haynesville shale pit water. Desalination 369:188–200

    Article  CAS  Google Scholar 

  100. Remy C, Jekel M (2012) Energy analysis of conventional and source-separation systems for urban wastewater management using life cycle assessment. Water Sci Technol 65:22–29

    Article  CAS  Google Scholar 

  101. Remy C, Miehe U, Lesjean B, Bartholomaus C (2014) Comparing environmental impacts of tertiary wastewater treatment technologies for advanced phosphorus removal and disinfection with life cycle assessment. Water Sci Technol 69:1742–1750

    Article  CAS  Google Scholar 

  102. Kobayashi Y, Peters GM, Ashbolt NJ, Heimersson S, Svanstrom M, Khan SJ (2015) Global and local health burden trade-off through the hybridisation of quantitative microbial risk assessment and life cycle assessment to aid water management. Water Res 79:26–38

    Article  CAS  Google Scholar 

  103. O’Connor Garnier G, Batchelor W (2014) Life cycle assessment comparison of industrial effluent management strategies. J Clean Prod 79:168–181

    Article  Google Scholar 

  104. Pintilie L, Torres CM, Teodosiu C, Castells F (2016) Urban wastewater reclamation for industrial reuse: An LCA case study. J Clean Prod 139:1–14

    Article  Google Scholar 

  105. Pirani S, Natarajan L, Abbas Z, Arafat H (2012) Life cycle assessment of membrane bioreactor versus CAS wastewater treatment Masdar City and beyond. In: The Sixth Jordan international chemical engineering conference

    Google Scholar 

  106. Vlasopoulos N, Memon FA, Butler D, Murphy R (2006) Life cycle assessment of wastewater treatment technologies treating petroleum process waters. Sci Total Environ 367:58–70

    Article  CAS  Google Scholar 

  107. Rahman SM, Eckelman MJ, Onnis-Hayden A, Zu AZ (2016) Life-cycle assessment of advanced nutrient removal technologies for wastewater treatment. Environ Sci Technol 50:3020–3030

    Article  CAS  Google Scholar 

  108. Høibye L, Clauson-Kaas J, Wenzel H, Larsen HF, Jacobsen BN, Dalgaard O (2008) Sustainability assessment of advanced wastewater treatment technologies. Water Sci Technol 58:963–968

    Article  Google Scholar 

  109. Garcia-Montoya M, Sengupta D, Rivera FN, Ponce-Ortega JM, El-Halwagi MM (2016) Environmental and economic analysis for the optimal reuse of water in a residential complex. J Clean Prod 130:82–91

    Article  Google Scholar 

  110. Machado AP, Urbano L, Brito A, Janknecht P, Salas JJ, Nogueira R (2007) Life cycle assessment of wastewater treatment options for small and decentralized communities. Water Sci Technol 56:15–22

    Article  CAS  Google Scholar 

  111. Corominas L, Foley J, Guest JS, Hospido A, Larsen HF, Morera S, Shaw A (2013) Life cycle assessment applied to wastewater treatment: state of the art. Water Res 47:5480–5492

    Article  CAS  Google Scholar 

  112. Hospido A, Sanchez I, Rodriguez-Garcia G, Iglesias A, Buntner D, Reif R, Moreira MT, Feijoo G (2012) Are all membrane reactors equal from an environmental point of view? Desalination 285:263–270

    Article  CAS  Google Scholar 

  113. Ioannou-Tofta L, Foteinis S, Chatzisymeons E, Fatta-Kassinos D (2016) The environmental footprint of a membrane bioreactor treatment process through life cycle analysis. Sci Total Environ 568:306–318

    Article  Google Scholar 

  114. Bayer C, Follmanm M, Melin T, Wintgens T, Larsson K, Almemark M (2010) The ecological impact of membrane-based extraction of phenolic compounds—a life cycle assessment study. Water Sci Technol 62:915–919

    Article  CAS  Google Scholar 

  115. Tangsubkul N, Parameshwaranb K, Lundie S, Fane AG, Waite TD (2006) Environmental life cycle assessment of the microfiltration process. J Membr Sci 284:214–226

    Article  CAS  Google Scholar 

  116. Razali M, Kim JF, Attfield M, Budd PM, Drioli E, Lee YM, Szekely G (2015) Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chem 17:5196–5205

    Article  CAS  Google Scholar 

  117. Pretel R, Moñino P, Robles A, Ruano MV, Ferrer J (2016) Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste. J Environ Manage 179:83–92

    Article  CAS  Google Scholar 

  118. Pretel R, Robles A, Ruano MV, Seco A, Ferrer J (2016) Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. J Environ Manage 166:45–54

    Article  CAS  Google Scholar 

  119. Balkema AA, Presig HA, Otterpohl R, Lambert FJD (2002) Indicators for the sustainability assessment of wastewater treatment systems. Urban Water 4:153–161

    Article  CAS  Google Scholar 

  120. Kalbar PP, Karnakar S, Asolekar SR (2012) Technology assessment for wastewater treatment using multiple-attribute decision-making. Technol Soc 34:295–302

    Article  Google Scholar 

  121. Plakas KV, Georgiadis AA, Karabelas AJ (2016) Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis. Water Sci Technol 73:1532–1540

    Article  CAS  Google Scholar 

  122. Chen Z, Ngo HH, Guo W (2012) A critical review on sustainability assessment of recycled water schemes. Sci Total Environ 426:13–31

    Article  CAS  Google Scholar 

  123. Omont S, Froelich D, Gésan-Guizipu G, Rabiller-Baudry Thueux F, Beudon D (2012) Comparison of milk separation processes by life cycle analysis. Chromatography vs. filtration. Proc Eng 44:1825–1827

    Article  Google Scholar 

  124. Omont S, Froelich D, Osset P, Thueux F, Rabiller-Baudry M, Beudon D, Tregert L, Buson C, Auffret D, Gésan-Guizipu G (2010) Eco-design of cascade membrane processes for the preparation of milk protein fractions: approach and LCA results. In: Proceedings LCA food-ecodesign-proceedings

    Google Scholar 

  125. Aldaco R, Diban N, Margallo M, Barceló A, Ortiz I, Irabien A (2014) Environmental sustainability assessment of an innovative process for partial dealcoholization of wines. In: Proceedings of the 9th international conference on life cycle assessment in the agri-food sector

    Google Scholar 

  126. Margallo M, Aldaco R, Barceló A, Diban N, Ortiz I, Irabien A (2015) Life cycle assessment of technologies for partial dealcoholisation of wines. Sustain Prod Consum 2:29–39

    Article  Google Scholar 

  127. Notarnicola Tassielli G, Renzulli P (2015) Environmental and technical improvement of a grape must concentration system via a life cycle approach. J Clean Prod 89:87–98

    Article  Google Scholar 

  128. Abdel-Salam AH, Simonson C (2014) Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV. Appl Energy 116:134–148

    Article  Google Scholar 

  129. Cuéllar-Franca RM, Azapgic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102

    Google Scholar 

  130. Zhang X, Singh B, He X, Gundersen T, Deng L, Zahng S (2014) Post-combustion carbon capture technologies: energetic analysis and life cycle assessment. Int J Greenhouse Gases 27:289–298

    Article  CAS  Google Scholar 

  131. Schreiber A, Marx J, Zapp P (2013) Environmental assessment of a membrane-based air separation for a coal-fired oxyfuel power plant. J Membr Sci 440:122–133

    Article  CAS  Google Scholar 

  132. Troy S, Schreober A, Zapp P (2016) Life cycle assessment of membrane carbon capture and storage. Clean Technol Environ Policy 18:1641–1654

    Article  CAS  Google Scholar 

  133. Petrakopoulou F, Irribaren D, Dufour J (2015) Life-cycle performance of natural gas power plants with pre-combustion CO2 capture, greenhouse gases science and technology. Greenhouse Gas Sci Technol 5:268–276

    Article  CAS  Google Scholar 

  134. Martins AA, Mata TM, Costa CAV, Sikdar S (2007) Framework for sustainability metrics. Ind Eng Chem Res 46:2962–2973

    Article  CAS  Google Scholar 

  135. Mata TM, Caetano NS, Costa CAV, Martins AA (2013) Sustainability analysis of biofuels through the supply chain using indicators. Sustain Energy Technol Assess 3:53–60

    Google Scholar 

  136. Mata TM, Martins AA, Sikdar S, Costa CAV (2011) Sustainability considerations of biodiesel based on supply chain analysis. Clean Technol Environ Policy 13:655–671

    Article  Google Scholar 

  137. Szekely G, Jimenez-Solomon MF, Marchetti P, Kim JF, Livingston AG (2014) Sustainability assessment of organic solvent nanofiltration: from fabrication to application. Green Chem 16:4440–4473

    Article  CAS  Google Scholar 

  138. Criscuoli A, Drioli E (2007) New metrics for evaluating the performance of membrane operations in the logic of process intensification. Ind Eng Chem Res 46:2268–2271

    Article  CAS  Google Scholar 

  139. Brunetti A, Macedonio F, Barbieri G, Drioli E (2015) Membrane engineering for environmental protection and sustainable industrial growth: options for water and gas treatment. Environ Eng Res 20(4):307–328

    Article  Google Scholar 

  140. Pal P, Nayak J (2016) Development and analysis of a sustainable technology in manufacturing acetic acid and whey protein from waste cheese whey. J Clean Prod 112:59–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the financial support of project POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE) funded by FEDER through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through FCT. Authors also thank FCT for their support through provision of the research grants IF/01093/2014 and SFRH/BPD/112003/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António A. Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Martins, A.A., Caetano, N.S., Mata, T.M. (2017). LCA for Membrane Processes. In: Figoli, A., Criscuoli, A. (eds) Sustainable Membrane Technology for Water and Wastewater Treatment. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5623-9_2

Download citation

Publish with us

Policies and ethics