Skip to main content

Liquid Metal Enabled Injectable Biomedical Electronics

  • Chapter
  • First Online:
Liquid Metal Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 10))

Abstract

In clinics, a medical device is defined as implantable if it is either partly or totally introduced, surgically or medically into the human body and is intended to remain there after the procedure. By virtue of characteristics of well controlled wettability, high electrical conductivity, low cost and easy operation, liquid metal materials have been developed into above area in recent years. In this chapter, representative strategies to develop liquid metals as implantable or injectable medical electronics were introduced and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim DH, Viventi J, Amsden JJ et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517

    Article  CAS  Google Scholar 

  2. Jiang G, Zhou DD (2010) Technology advances and challenges in hermetic packaging for implantable medical devices. In: Implantable neural prostheses 2: techniques and engineering approaches. Springer, Berlin, pp 28–61

    Google Scholar 

  3. Bazaka K, Jacob MV (2013) Implantable devices: issues and challenges. Electronics 2(1):1–34

    Google Scholar 

  4. ISO 13485 (2003) Medical devices-quality management systems-requirements for regulatory purposes. Geneva, Switzerland. http://www.iso.org/iso/catalogue_detail?csnumber=36786

  5. Viventi J, Kim DH, Moss JD et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2(24):24ra22

    Article  CAS  Google Scholar 

  6. Kim DH, Ahn JH, Choi WM et al (2008) Strechable and foldable silicon integrated circuits. Science 320(5875):507–511

    Article  CAS  Google Scholar 

  7. Irnich W (2002) Electronic security systems and active implantable medical devices. Pacing Clin Electrophysiol Pace 25(8):1235–1258

    Article  Google Scholar 

  8. Adunka O, Kiefer J, Unkelbach MH et al (2010) Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation. Laryngoscope 114(114):1237–1241

    Google Scholar 

  9. Halperin D, Heydt-Benjamin TS, Fu K et al (2008) Security and privacy for implantable medical devices. Pervasive Comput 7:30–39

    Article  Google Scholar 

  10. Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11(11):1–24

    Article  CAS  Google Scholar 

  11. Fountas KN, Kapsalaki E, Hadjigeorgiou G (2010) Cerebellar stimulation in the management of medically intractable epilepsy: a systematic and critical review. Neurosurg Focus 29(2):E8

    Article  Google Scholar 

  12. Zrenner E (2002) Will retinal implants restore vision? Science 295(5557):1022–1025

    Article  CAS  Google Scholar 

  13. Magjarević R, Ferekpetrić B (2010) Implantable cardiac pacemakers-50 years from the first implantation. Zdravniški Vestnik 79(1):55–67

    Google Scholar 

  14. Gelinck GH, Huitema HEA, Veenendaal EV et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mat 3(2):106–110

    Article  CAS  Google Scholar 

  15. Onuki Y, Bhardwaj U, Papadimitrakopoulos F et al (2008) A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diab Sci Technol 2(6):1003–1015

    Article  Google Scholar 

  16. Cameron T, Liinamaa TL, Loeb GE et al (1998) Long-term biocompatibility of a miniature stimulator implanted in feline hind limb muscles. IEEE Trans Biomed Eng 45(8):1024–1035

    Article  CAS  Google Scholar 

  17. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953

    Article  CAS  Google Scholar 

  18. International Organization for Standardization ISO 10993. Biological evaluation of medical devices. Part 1: evaluation and testing within a risk management process. Geneva: ISO, 2009

    Google Scholar 

  19. Joung YH (2013) Development of implantable medical devices: from an engineering perspective. Int Neurourol J 17(3):98–106

    Article  Google Scholar 

  20. Thomas RW (1976) Moisture, myths, and microcircuits. IEEE Trans Parts Hybrids Packag 12(3):167–171

    Article  Google Scholar 

  21. Chlebowski AL, Chow EY, Ellison C et al (2012) Integrated LTCC packaging for use in biomedical devices. Biomed Mater Eng 22(6):361–372

    CAS  Google Scholar 

  22. Kim SJ, Lee DS, Kim IG et al (2012) Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor. Kaohsiung J Med Sci 28(3):123–129

    Article  CAS  Google Scholar 

  23. Chen GQ (2011) Biofunctionalization of polymers and their applications. Adv Biochem Eng Biotechnol 125(125):29–45

    CAS  Google Scholar 

  24. Guenther T, Dodds CWD, Lovell NH et al. (2011) Chip-scale hermetic feedthroughs for implantable bionics. In: International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 6717–6720

    Google Scholar 

  25. Qin Y, Howlader MMR, Deen MJ et al (2014) Polymer integration for packaging of implantable sensors. Sens Actuators B Chem 202(10):758–778

    Article  CAS  Google Scholar 

  26. Hwang GT, Im D, Lee SE et al (2013) In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano 7(5):4545–4553

    Article  CAS  Google Scholar 

  27. Ha D, Kim BG, Lin TY et al. (2010) 3D packaging technique on liquid crystal polymer (LCP) for miniature wireless biomedical sensor. In: Microwave Symposium Digest. IEEE, pp 612–615

    Google Scholar 

  28. White TJ, Broer DJ (2015) Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater 14(11):1087

    Article  CAS  Google Scholar 

  29. Kim S, Bhandari R, Klein M et al (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevice 11(2):453–466

    Article  CAS  Google Scholar 

  30. Ryu SI, Shenoy KV (2009) Human cortical prostheses: lost in translation? Neurosurg Focus 27(1):E5

    Article  Google Scholar 

  31. Schalk G, Miller KJ, Anderson NR et al (2008) Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng 5(1):75

    Article  CAS  Google Scholar 

  32. So JH, Thelen J, Qusba A et al (2009) Reversibly deformable and mechanically tunable fluidic antennas. Adv Func Mater 19(22):3632–3637

    Article  CAS  Google Scholar 

  33. Zhang Q, Zheng Y, Liu J (2012) Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4):311–340

    Article  Google Scholar 

  34. Zheng Y, He Z, Gao Y et al (2013) Direct desktop printedcircuits—on-paper flexible electronics. Sci Rep 3(5):759–762

    Google Scholar 

  35. Wang L, Liu J (2014) Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Sci China Technol Sci 57(11):2089–2095

    Article  CAS  Google Scholar 

  36. Jin C, Zhang J, Li X et al (2013) Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep 3:3342

    Article  Google Scholar 

  37. Butson CR, Maks CB, Mcintyre CC (2006) Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol 117(2):447

    Article  Google Scholar 

  38. Chu V, Otero JM, Lopez O et al (2001) Method for non-invasively recording electrocardiograms in conscious mice. BMC Physiol 1(1):6

    Article  CAS  Google Scholar 

  39. Salama G, London B (2007) Mouse models of long QT syndrome. J Physiol 578(1):43–53

    Article  CAS  Google Scholar 

  40. Sun X, Yuan B, Rao W, Liu J (2017) Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors. Biomaterials 146:156–167

    Article  CAS  Google Scholar 

  41. Cabrales LB, Ciria HC, Bruzón RP et al (2001) Electrochemical treatment of mouse Ehrlich tumor with direct electric current. Bioelectromagnetics 22:316–322

    Article  CAS  Google Scholar 

  42. Wemyss-Holden SA, Robertson GS, Dennison AR et al (2000) Electrochemical lesions in the rat liver support its potential for treatment of liver tumors. J Surg Res 93:55–62

    Article  CAS  Google Scholar 

  43. Czymek R, Nassrallah J, Gebhard M et al (2012) Intrahepatic radiofrequency ablation versus electrochemical treatment in vivo. Surg Oncol 21:79–86

    Article  Google Scholar 

  44. Keisari Y, Hochman I, Confino H, Korenstein R, Kelson I (2014) Activation of local and systemic anti-tumor immune responses by ablation of solid tumors with intratumoral electrochemical or alpha radiation treatments. Cancer Immunol Immunother 63:1–9

    Article  CAS  Google Scholar 

  45. Nilsson E, von Euler H, Berendson J et al (2000) Electrochemical treatment of tumours. Bioelectrochemistry 51:1–11

    Article  CAS  Google Scholar 

  46. Li K, Xin Y, Gu Y, Xu B, Fan D, Ni B (1997) Effects of direct current on dog liver: possible mechanisms for tumor electrochemical treatment. Bioelectromagnetics 18:2–7

    Article  CAS  Google Scholar 

  47. Xin Y, Xue F, Ge B, Zhao F, Shi B, Zhang W (1997) Electrochemical treatment of lung cancer. Bioelectromagnetics 18:8–13

    Article  CAS  Google Scholar 

  48. Li J, Xin Y, Fan X, Chen J, Wang J, Zhou J (2013) Effect of electrochemotherapy in treating patients with venous malformations. Chinese J integr Med 19:387–393

    Article  Google Scholar 

  49. Yen Y, Li J, Zhou B, Rojas F, Yu J, Chou C (1999) Electrochemical treatment of human KB cells in vitro. Bioelectromagnetics 20:34–41

    Article  CAS  Google Scholar 

  50. Nilsson E, Fontes E (2001) Mathematical modelling of physicochemical reactions and transport processes occurring around a platinum cathode during the electrochemical treatment of tumours. Bioelectrochemistry 53:213–224

    Article  CAS  Google Scholar 

  51. Cury FL, Bhindi B, Rocha J et al (2015) Electrochemical red-ox therapy of prostate cancer in nude mice. Bioelectrochemistry 104:1–9

    Article  CAS  Google Scholar 

  52. Belyy Y, Tereshchenko A, Shatskih A (2012) Electrochemical lysis of an intraocular tumour using a combination of electrode placements. Ecancermedicalscience 6:272

    CAS  Google Scholar 

  53. Czymek R, Dinter D, Löffler S et al (2011) Electrochemical treatment: An investigation of dose-response relationships using an isolated liver perfusion model. Saudi J Gastroenterol 17:335

    Article  Google Scholar 

  54. Ren RL, Vora N, Yang F et al (2001) Variations of dose and electrode spacing for rat breast cancer electrochemical treatment. Bioelectromagnetics 22:205–211

    Article  CAS  Google Scholar 

  55. von Euler H, Nilsson E, Olsson JM, Lagerstedt AS (2001) Electrochemical treatment (EChT) effects in rat mammary and liver tissue. In vivo optimizing of a dose-planning model for EChT of tumours. Bioelectrochemistry 54:117–124

    Article  Google Scholar 

  56. Jin C, Zhang J, Li X, Yang X, Li J, Liu J (2013) Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep 3(6163):3442

    Article  Google Scholar 

  57. Liu J, Fu TM, Cheng Z et al (2015) Syringe-injectable electronics. Nat Nanotechnol 10:629–636

    Article  CAS  Google Scholar 

  58. Hong G, Fu TM, Zhou T, Schuhmann TG, Huang J, Lieber CM (2015) Syringe injectable electronics: Precise targeted delivery with quantitative input/output connectivity. Nano Lett 15:6979–6984

    Article  CAS  Google Scholar 

  59. Kim DH, Lee Y (2015) Bioelectronics: injection and unfolding. Nat Nanotechnol 10:570–571

    Article  CAS  Google Scholar 

  60. Sheng L, Zhang J, Liu J (2014) Diverse transformations of liquid metals between different morphologies. Adv Mater 26:6036–6042

    Article  CAS  Google Scholar 

  61. Zhang J, Sheng L, Liu J (2014) Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep 4:7116

    Article  Google Scholar 

  62. Liu T, Sen P, Kim CJ (2012) Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst 21:443–450

    Article  CAS  Google Scholar 

  63. Saiz E, Tomsia AP (2004) Atomic dynamics and Marangoni films during liquid-metal spreading. Nat Mater 3:903–909

    Article  CAS  Google Scholar 

  64. Zavabeti A, Daeneke T, Chrimes AF et al (2016) Ionic imbalance induced self-propulsion of liquid metals. Nat Commun 7:12402

    Article  CAS  Google Scholar 

  65. Wójcicki M, Drozdzik M, Olewniczak S et al (2000) Antitumor effect of electrochemical therapy on transplantable mouse cancers. Med Sci Monit 6:498–502

    Google Scholar 

  66. Turk B, Bieth JG, Björk I et al (1995) Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Bio Chem Hoppe-Seyler 376:225–230

    Article  CAS  Google Scholar 

  67. Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886

    Article  CAS  Google Scholar 

  68. von Euler H, Olsson JM, Hultenby K, Thörne A, Lagerstedt AS (2003) Animal models for treatment of unresectable liver tumours: a histopathologic and ultra-structural study of cellular toxic changes after electrochemical treatment in rat and dog liver. Bioelectrochemistry 59:89–98

    Article  CAS  Google Scholar 

  69. von Euler H, Stråhle K, Thörne A, Yongqing G (2004) Cell proliferation and apoptosis in rat mammary cancer after electrochemical treatment (EChT). Bioelectrochemistry 62:57–65

    Article  CAS  Google Scholar 

  70. Ikada Y, Tabata Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31(3):287–301

    Article  CAS  Google Scholar 

  71. Azab AK, Doviner V, Orkin B et al (2007) Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat. J Biomed Mater Res, Part A 83(2):414–422

    Article  CAS  Google Scholar 

  72. Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohyd Polym 77(1):1–9

    Article  CAS  Google Scholar 

  73. Tan H, Li H, Rubin JP et al (2011) Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J Tissue Eng Regenerative Med 5(10):790–797

    Article  CAS  Google Scholar 

  74. Wang X, Ren Y, Liu J (2018) Liquid metal enabled electrobiology: A generalized easy going way to tackle disease challenges. arXiv:1805.04002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Yi, L. (2018). Liquid Metal Enabled Injectable Biomedical Electronics. In: Liquid Metal Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-5607-9_8

Download citation

Publish with us

Policies and ethics