Skip to main content

Preparations and Characterizations of Functional Liquid Metal Materials

  • Chapter
  • First Online:
Book cover Liquid Metal Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 10))

Abstract

This chapter summarizes the fabrication methods and characterizations of the functional liquid metal biomaterials. The future outlooks, including challenges, routes and related efforts, were illustrated and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Q, Yu Y, Liu J (2017) Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mat 20:1700781

    Article  CAS  Google Scholar 

  2. Moskalyk RR (2003) Gallium: the backbone of the electronics industry. Miner Eng 16(10):921–929

    Article  CAS  Google Scholar 

  3. Cheng J, Steckl AJ (2001) Mg–Ga liquid metal ion source for implantation doping of GaN. J Vac Sci Technol, B 19(6):2551–2554

    Article  CAS  Google Scholar 

  4. FeltonL E, RaederC H, Knorr DB (1993) The properties of tin-bismuth alloy solders. JOM 45(7):28–32

    Article  Google Scholar 

  5. Ge H, Li H, Mei S et al (2013) Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. Renew Sustain Energy Rev 21(5):331–346

    Article  CAS  Google Scholar 

  6. Koirala RP, Singh BP, Jha IS, Adhikari D (2015) Viscosity of liquid Na–K alloy. Bibechana 12:135–144

    Google Scholar 

  7. Berghout A, Knider F, Hugel J et al (2007) Partial resistivity analysis of the NaK, NaRb and NaCs liquid alloys. J Non-Cryst Solids 353(32):3226–3230

    Article  CAS  Google Scholar 

  8. Gao Y, Liu J (2012) Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 107(3):701–708

    Article  CAS  Google Scholar 

  9. Zhang W, Ou JZ, Tang S, Sivan V, Yao DD, Latham K, Khoshmanesh K, Mitchell A, Omullane AP, Kalantarzadeh K (2014) Liquid metal/metal oxide frameworks. Adv Func Mat 24(24):3799–3807

    Article  CAS  Google Scholar 

  10. Zhang W, Naidu BS, Ou JZ, Omullane AP, Chrimes AF, Carey BJ, Wang Y, Tang S, Sivan V, Mitchell A, Bhargava SK, Kalantarzadeh K (2015) Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis. ACS Appl Mater Interf 7(3):1943–1950

    Article  CAS  Google Scholar 

  11. Syed N, Zavabeti A, Mohiuddin M, Zhang B, Wang Y, Datta RS et al (2017) Sonication-assisted synthesis of gallium oxide suspensions featuring trap state absorption: test of photochemistry. Adv Funct Mater 27:1702295

    Article  CAS  Google Scholar 

  12. Thlelen J, Dickey MD, Ward TA (2012) study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab Chip 12(20):3961–3967

    Article  CAS  Google Scholar 

  13. Hutter T, Bauer WAC, Elliott SR, Huck WTS (2012) Formation of spherical and non-spherical eutectic gallium-indium liquid-metal microdroplets in microfluidic channels at room temperature. Adv Funct Mater 22(12):2624–2631

    Article  CAS  Google Scholar 

  14. Utada AS, Fernandez-Nieves A, Stone AHA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99(9):094502

    Article  CAS  Google Scholar 

  15. Utada AS, Fernandez-Nieves A, Gordillo JM, Weitz DA (2008) Absolute instability of a liquid jet in a coflowing stream. Phys Rev Lett 100(1):014502

    Article  CAS  Google Scholar 

  16. Yu Y, Wang Q, Yi L, Liu Y (2014) Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Adv Eng Mater 16(2):255–262

    Article  CAS  Google Scholar 

  17. Fang W, He Z, Liu J et al (2014) Electro-hydrodynamic shooting phenomenon of liquid metal stream. Appl Phys Lett 105(13):134104

    Article  CAS  Google Scholar 

  18. Yu Y, Wang Q, Wang XL, Wu YH, Liu J (2016) Liquid metal soft electrode triggered discharge plasma in aqueous solution. RSC Adv 6(115):11477

    Article  CAS  Google Scholar 

  19. Zhang W, Srichan N, Chrimes AF, Taylor M, Berean KJ, Ou JZ et al (2016) Sonication synthesis of micro-sized silver nanoparticle/oleic acid liquid marbles: a novel SERS sensing platform. Sens Actuators B Chemical 223:52–58

    Article  CAS  Google Scholar 

  20. Ren L, Zhuang J, Casillas G, Feng H, Liu Y, Xu X et al (2016) Nanodroplets for stretchable superconducting circuits. Adv Func Mater 26:8111

    Article  CAS  Google Scholar 

  21. Lu Y, Hu Q, Lin Y et al (2015) Transformable liquid-metal nanomedicine. Nat Commun 32(6):10066

    Article  CAS  Google Scholar 

  22. Yamaguchi A, Mashima Y, Iyoda T (2015) Reversible size control of liquid metal nanoparticles under ultrasonication. Angew Chem 54(43):12809–12813

    Article  CAS  Google Scholar 

  23. Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interf Sci 16(4):266–271

    Article  CAS  Google Scholar 

  24. Sivan V, Tang S, Omullane AP et al (2013) Liquid metal marbles. Adv Func Mater 23(2):144–152

    Article  CAS  Google Scholar 

  25. Chen Y, Liu Z, Zhu D, Wang SH, Liang S, Yang J et al (2017) Liquid metal droplets with high elasticity, mobility and mechanical robustness. Mater Horiz 4:591

    Article  CAS  Google Scholar 

  26. Tang S, Sivan V, Khoshmanesh K et al (2013) Electrochemically induced actuation of liquid metal marbles. Nanoscale 5(13):5949–5957

    Article  CAS  Google Scholar 

  27. Tang X, Tang S, Sivan V et al (2013) Photochemically induced motion of liquid metal marbles. Appl Phys Lett 103(17):174104-1–174104-4

    Article  CAS  Google Scholar 

  28. Zhao Y, Fang J, Wang H et al (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710

    Article  CAS  Google Scholar 

  29. Kim D, Lee J (2015) Magnetic-field-induced liquid metal droplet manipulation. J Korean Phys Soc 66(2):282–286

    Article  CAS  Google Scholar 

  30. Jeon J, Lee J, Chung SK et al (2016) Magnetic liquid metal marble: characterization of lyophobicity and magnetic manipulation for switching applications. IEEE/ASME J Microelectromechanical Syst 25(6):1050–1057

    Article  CAS  Google Scholar 

  31. Zhang J, Guo R, Liu J et al (2016) Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B 4(32):5349–5357

    Article  CAS  Google Scholar 

  32. Hoshyargar F, Crawford J, Mullane AP (2017) Galvanic replacement of the liquid metal galinstan. J Am Chem Soc 139:1464–1471

    Article  CAS  Google Scholar 

  33. Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E (2017) Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun 8:15432

    Article  CAS  Google Scholar 

  34. Ma K, Liu J (2007) Nano liquid-metal fluid as ultimate coolant. Phys Lett A 361(3):252–256

    Article  CAS  Google Scholar 

  35. Zhang Q, Liu J (2013) Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2:863–872

    Article  CAS  Google Scholar 

  36. Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 1–17

    Google Scholar 

  37. Xiong M, Gao Y, Liu J et al (2014) Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. J Magn Magn Mater 354:279–283

    Article  CAS  Google Scholar 

  38. Dodbiba G, Ono K, Park HS, Matsuo S, Fujita T (2011) FeNbVB alloy particles suspended in liquid gallium: investigating the magnetic properties of the MR suspension. Int J Mod Phys B 25(7):329–337

    Article  Google Scholar 

  39. Ito R, Dodbiba G, Fujita T (2012) MR fluid of liquid gallium dispersing magnetic particles. Int J Mod Phys B 19:1430–1436

    Article  Google Scholar 

  40. Tang JB, Zhao X, Li J, Zhou Y, Liu J (2017) Liquid metal phagocytosis: Intermetallic wetting induced particle internalization. Adv Sci 4(5):1700024

    Article  CAS  Google Scholar 

  41. Mei SF, Gao YX, Deng ZS, Liu J (2014) Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil. J Electron Packag 136:011009

    Article  CAS  Google Scholar 

  42. Lin Y, Ladd C, Wang S, Martin A, Genzer J, Khan SA, Dickey MD (2016) Drawing liquid metal wires at room temperature. Extreme Mech Lett 7:55–63

    Article  Google Scholar 

  43. Li P, Liu J (2011) Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. ASME J Electron Packag 133(4):041009

    Article  CAS  Google Scholar 

  44. Alchagirov BB, Mozgovoi AG (2005) The surface tension of molten gallium at high temperatures. High Temp 43(5):791–792

    Article  CAS  Google Scholar 

  45. Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu JT, Wakeham WA (2012) Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon. J Phys Chem Ref Data 41(3):285

    Google Scholar 

  46. Larsen RJ, Dickey MD, Whitesides GM, Weitz DA (2009) Viscoelastic properties of oxide-coated liquid metals. J Rheol 53(6):1305–1326

    Article  CAS  Google Scholar 

  47. Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM (2008) Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Func Mater 18(7):1097–1104

    Article  CAS  Google Scholar 

  48. Liu T, Sen P, Kim C (2012) Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. IEEE/ASME J Microelectromech Syst 21(2):443–450

    Article  CAS  Google Scholar 

  49. Surmann P, Zeyat H (2005) Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 383(6):1009–1013

    Article  CAS  Google Scholar 

  50. Morley NB, Burris J, Cadwallader LC, Nornberg MD (2008) GaInSn usage in the research laboratory. Rev Sci Instrum 79(5):112–192

    Article  CAS  Google Scholar 

  51. Cao L, Park H, Dodbiba G et al (2011) Keeping gallium metal to liquid state under the freezing point by using silica nanoparticles. Appl Phys Lett 99(14):143120-1–143120-3

    Article  CAS  Google Scholar 

  52. GaoY X, Li H, Liu J (2012) Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 7:e45485

    Article  CAS  Google Scholar 

  53. Qiao L, Su F, Bi H, Girault HH, Liu B (2011) Ga2O3 photocatalyzed on-line tagging of cysteine to facilitate peptide mass fingerprinting. Proteomics 11(17):3501–3509

    Article  CAS  Google Scholar 

  54. Suo G, Jiang S, Zhang J et al (2014) Synthetic strategies and applications of GaN nanowires. Adv Condens Matter Phys 2014:1–11

    Article  CAS  Google Scholar 

  55. Carey BJ, Ou JZ, Clark RM, Berean KJ, Zavabeti A, Chesman ASR et al (2017) Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat Commun 8:14482

    Article  CAS  Google Scholar 

  56. Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B: Chem 99(2):592–600

    Article  CAS  Google Scholar 

  57. Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149(1):174–180

    Article  CAS  Google Scholar 

  58. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167

    Article  CAS  Google Scholar 

  59. Tsai TH, Kuo LS, Chen PH, Lee D, Yang C (2010) Applications of ferro-nanofluid on a micro-transformer. Sensors 10(9):8161–8172

    Article  CAS  Google Scholar 

  60. Zheng Y, He ZZ, Yang J, Liu J (2014) Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep 4:4588

    Article  CAS  Google Scholar 

  61. Deng Y, Liu J (2009) Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Appl Phys A 95:907–915

    Article  CAS  Google Scholar 

  62. Surmann P, Zeyat H (2005) Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 383:1009–1013

    Article  CAS  Google Scholar 

  63. Lu J, Yi L, Wang L, Tan S, Gui H, Liu J (2016) Liquid metal corrosion sculpture to fabricate quickly complex patterns on aluminum. Sci China Technol Sci 60:65–70

    Article  CAS  Google Scholar 

  64. Tang W, Jiang T, Fan FR et al (2015) Liquidmetal electrode for high performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv Func Mater 25(24):3718–3725

    Article  CAS  Google Scholar 

  65. Takahashi R, Matsuo M, Ono M, Harii K, Chudo H, Okayasu S, Ieda JI, Takahashi S, Maekawa S, Saitoh E (2016) Spin hydrodynamic generation. Nat Phys 12(1):52

    Article  CAS  Google Scholar 

  66. Wang H, Leung DY, Leung MK, Ni M (2009) A review on hydrogen production using aluminum and aluminum alloys. Renew Sustain Energy Rev 13(4):845–853

    Article  CAS  Google Scholar 

  67. Yang W, Zhang TY, Liu JZ, Wang XH, Zhou JH, Cen KF (2015) Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature. Energy 93(1):451–457

    Article  CAS  Google Scholar 

  68. Ho C, Huang C (2016) Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water. Int J Hydrogen Energy 41(6):3741–3747

    Article  CAS  Google Scholar 

  69. Wu D, Ouyang L, Wu C, Wang H, Liu J, Sun L, Zhu M (2015) Phase transition and hydrogen storage properties of Mg–Ga alloy. J Alloy Compd 642:180–184

    Article  CAS  Google Scholar 

  70. Ilyukhina AV, Kravchenko OV, Bulychev BM, Shkolnikov EI (2010) Mechanochemical activation of aluminum with gallams for hydrogen evolution from water. Int J Hydrogen Energy 35(5):1905–1910

    Article  CAS  Google Scholar 

  71. Baniamerian MJ, Moradi SE (2011) Al–Ga doped nanostructured carbon as a novel material for hydrogen production in water. J Alloy Compd 509(21):6307–6310

    Article  CAS  Google Scholar 

  72. Kravchenko OV, Semenenko KN, Bulychev BM, Kalmykov KB (2005) Activation of aluminum metal and its reaction with water. J Alloy Compd 397(1):58–62

    Article  CAS  Google Scholar 

  73. Wang W, Zhao X, Chen DM, Yang K (2012) Insight into the reactivity of AL–Ga–In–Sn alloy with water. Int J Hydrogen Energy 37(3):2187–2194

    Article  CAS  Google Scholar 

  74. Parmuzina AV, Kravchenko OV (2008) Activation of aluminium metal to evolve hydrogen from water. Int J Hydrogen Energy 33(12):3073–3076

    Article  CAS  Google Scholar 

  75. Fan MQ, Xu F, Sun LX (2007) Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. Int J Hydrogen Energy 32(14):2809–2815

    Article  CAS  Google Scholar 

  76. Yuan B, Tan S, Liu J (2016) Dynamic hydrogen generation phenomenon of aluminum fed liquid phase Ga–In alloy inside NaOH electrolyte. Int J Hydrogen Energy 41(3):1453–1459

    Article  CAS  Google Scholar 

  77. Taccardi N, Grabau M, Debuschewitz J, Distaso M, Brandl M, Hock R, Maier F, Papp C, Erhard J, Neiss C, Peukert W, Görling A, Steinrück HP, Wasserscheid P (2017) Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat Chem 9(9):862

    Article  CAS  Google Scholar 

  78. Simpkins BS, Ericson LM, Stroud RM et al (2006) Gallium-based catalysts for growth of GaN nanowires. J Cryst Growth 290(1):115–120

    Article  CAS  Google Scholar 

  79. Hoshyargar F, Khan H, Kalantar-zadeh K, Omullane AP (2015) Generation of catalytically active materials from a liquid metal precursor. Chem Commun 51:14026–14029

    Article  CAS  Google Scholar 

  80. Kalantar-zadeh K, Ou JZ, Daeneke T, Mitchell A, Sasaki T, Fuhrer MS (2016) Two dimensional and layered transition metal oxides. Appl Mater Today 5:73–89

    Article  Google Scholar 

  81. Shafiei M, Hoshyargar F, Motta N, O’Mullane AP (2017) Utilizing p-type native oxide on liquid metal microdroplets for low temperature gas sensing. Mater Des 122:288–295

    Article  CAS  Google Scholar 

  82. Zavabeti A, OuJ Z, Carey BJ, Syed N, Orrell-Trigg R, Mayes ELH et al (2017) A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358:332–335

    Article  CAS  Google Scholar 

  83. Kim YD, Hone J (2017) Screen printing of 2D semiconductors. Nature 544:167

    Article  CAS  Google Scholar 

  84. Wang J, Zeng M, Tan L, Dai B, Deng Y, Rümmeli M et al (2013) High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Sci Rep 3(3):2670

    Article  Google Scholar 

  85. Liu X, Chu PK, Ding C et al (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R-reports 47(3):49–121

    Article  CAS  Google Scholar 

  86. Wang H, Yuan B, Liang S, Guo R, Wang X, Chang H, Ding Y, Liu J, Wang L (2018) PLUS-material: porous liquid-metal enabled ubiquitous soft material. Mater Horiz. https://doi.org/10.1039/C7MH00989E

    Article  Google Scholar 

  87. Donahue CJ, Exline JA (2014) Anodizing and coloring aluminum alloys. J Chem Educ 91(5):711–715

    Article  CAS  Google Scholar 

  88. Diamanti MV, Curto BD, Masconale V et al (2012) Anodic coloring of titanium and its alloy for jewels production. Color Research and Application 37(5):384–390

    Article  Google Scholar 

  89. John S, Perumal AS, Shenoi BA et al (1984) Chemical colouring of aluminium. Surf Technol 22(1):15–20

    Article  CAS  Google Scholar 

  90. Wahab HA, Noordin MY, Izman S et al (2013) Quantitative analysis of electroplated nickel coating on hard metal. Sci World J 2013:631936

    Article  CAS  Google Scholar 

  91. Liang S, Liu J (2017) Colorful liquid metal printed electronics. DOI/, Sci China Technol Sci. https://doi.org/10.1007/s11431-017-9116-9

    Book  Google Scholar 

  92. Liang S, Rao W, Song K, Liu J (2017) Fluorescent liquid metal as transformable biomimetic chameleon. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b17233

    Article  Google Scholar 

  93. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  CAS  Google Scholar 

  94. Sajeev J (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Yi, L. (2018). Preparations and Characterizations of Functional Liquid Metal Materials. In: Liquid Metal Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-5607-9_5

Download citation

Publish with us

Policies and ethics