Skip to main content

Introduction

  • Chapter
  • First Online:
Liquid Metal Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 10))

Abstract

This chapter introduces a new biomedical category of the liquid metal biomaterials which consists of the core theme of the present book. The major advancements as made before will be briefly summarized and future directions worth of pursuing will be outlined. Representative applications enabled by liquid metal biomaterials from both therapeutic and diagnostic aspects will be pointed out. Potential efforts of employing liquid metals to resolve modern biomedical issues will be discussed. Perspective for future development in liquid metal biomaterials area will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yi L, Liu J (2017) Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 62:415–440

    Article  CAS  Google Scholar 

  2. Murray CJ, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF et al (2015) Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 386(10009):2145–2191

    Article  Google Scholar 

  3. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  CAS  Google Scholar 

  4. Kohn J (2004) New approaches to biomaterials design. Nat Mater 3(11):745–747

    Article  CAS  Google Scholar 

  5. Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462(7272):426–432

    Article  CAS  Google Scholar 

  6. Bhat S, Kumar A (2013) Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 3(3):e24717

    Article  Google Scholar 

  7. Dean MN, Swanson BO, Summers AP (2009) Biomaterials: properties, variation and evolution. Integr Comp Biol 49:15–20

    Article  Google Scholar 

  8. Rezaie HR, Bakhtiari L, Öchsner A (2015) Application of biomaterials. Biomaterials and their applications. Springer

    Google Scholar 

  9. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25(19):4731–4739

    Article  CAS  Google Scholar 

  10. Bencharit S, Byrd WC, Altarawneh S, Hosseini B, Leong A, Reside G et al (2014) Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res 16(6):817–826

    Article  Google Scholar 

  11. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD et al (2014) Artificial muscles from fishing line and sewing thread. Science 343(6173):868–872

    Article  CAS  Google Scholar 

  12. Tamura K, Mizuno H, Okada K, Katoh H, Hitomi S, Teramatsu T et al (1985) Experimental application of polyvinyl alcohol-silica for small artificial vessels. Biomat Med Dev Artif Organs 13(3–4):133–152

    Article  CAS  Google Scholar 

  13. Abbott F (1942) The use of fusible alloy in vapor diffusion pumps. Rev Sci Instrum 13(4):187

    Article  CAS  Google Scholar 

  14. Brunetti B, Gozzi D, Iervolino M, Piacente V, Zanicchi G, Parodi N et al (2006) Bismuth activity in lead-free solder Bi-In-Sn alloys. Calphad 30(4):431–442

    Article  CAS  Google Scholar 

  15. Moelans N, Kumar KH, Wollants P (2003) Thermodynamic optimization of the lead-free solder system Bi-In-Sn-Zn. J Alloy Compd 360(1):98–106

    Article  CAS  Google Scholar 

  16. Crubzy E, Murail P, Girard L, Bernadou JP (1998) False teeth of the Roman world. Nature 391:29

    Article  Google Scholar 

  17. Bahraminasab M, Hassan MR, Sahari BB (2010) Metallic biomaterials of knee and hip—a review. Trends Biomat Artif Organs 24(2):69–82

    Google Scholar 

  18. Poinern GEJ, Brundavanam S, Fawcett D (2012) Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng 2(6):218–240

    Article  Google Scholar 

  19. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734

    Article  CAS  Google Scholar 

  20. Valiathan MS, Krishnan VK (1999) Biomaterials: an overview. Natl Med J India 12(6):270–274

    CAS  Google Scholar 

  21. Zberg B, Uggowitzer PJ, Loffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mat 8:887–891

    Article  CAS  Google Scholar 

  22. Lim GB (2013) Atherosclerosis: addition of niacin to optimal statin therapy does not affect plaque regression. Nat Rev Cardiol 10(10):554

    Article  Google Scholar 

  23. Yin L, Huang X, Xu H, Zhang Y, Lam J, Cheng J, Rogers JA (2014) Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv Mater 26(23):3879–3884

    Article  CAS  Google Scholar 

  24. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals materials. Mat Sci Eng 77(2):1–34

    Google Scholar 

  25. Yun Y, Dong Z, Lee N, Liu Y, Xue D, Guo X, Kuhlamann J, Doepke A, Halsall HB, Sundaramurthy S et al (2009) Revolutionizing biodegradable metals. Mater Today 12(10):22–32

    Article  CAS  Google Scholar 

  26. Wang L, Liu J (2014) Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Sci China Technol Sci 57(11):2089–2095

    Article  CAS  Google Scholar 

  27. Zhang Q, Liu J (2013) Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2(5):863–872

    Article  CAS  Google Scholar 

  28. Liu T, Sen P, Kim CJC (2012) Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst 21(2):443–450

    Article  CAS  Google Scholar 

  29. Spells K (1936) The determination of the viscosity of liquid gallium over an extended range of temperature. Proc Phys Soc 48(2):299

    Article  CAS  Google Scholar 

  30. Yi L, Jin C, Wang L, Liu J (2014) Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials 35(37):9789–9801

    Article  CAS  Google Scholar 

  31. Li H, Mei S, Wang L, Gao Y, Liu J (2014) Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. Int J Heat Fluid Flow 47:1–8

    Article  Google Scholar 

  32. Sivan V, Tang SY, O’Mullane AP, Petersen P, Eshtiaghi N, Kalantar-zadeh K et al (2013) Liquid metal marbles. Adv Func Mater 23(2):137

    Article  Google Scholar 

  33. Li P, Liu J (2011) Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal. Appl Phys Lett 99(9):094106

    Article  CAS  Google Scholar 

  34. Gao Y, Liu J (2012) Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 107(3):701–708

    Article  CAS  Google Scholar 

  35. Liu J, Zhou YX, Lv YG, Li T (2005) Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump. In: ASME 2005 international mechanical engineering congress and exposition. American Society of Mechanical Engineers

    Google Scholar 

  36. Wang Q, Liu J (2013) Liquid metal based microwave delivery wire, fabrication and application. China Patent No. 201310259413.7, China

    Google Scholar 

  37. Kaltenbrunner M, Kettlgruber G, Siket C, Schwödiauer R, Bauer S (2010) Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv Mater 22(18):2065–2067

    Article  CAS  Google Scholar 

  38. Li G, Parmar M, Lee DW (2015) An oxidized liquid metal-based microfluidic platform for tunable electronic device applications. Lab Chip 15(3):766–775

    Article  CAS  Google Scholar 

  39. Fassler A, Majidi C (2013) 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting. Lab Chip 13(22):4442–4450

    Article  CAS  Google Scholar 

  40. Kramer RK, Majidi C, Wood RJ (2013) Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv Func Mater 23(42):5292–5296

    Article  CAS  Google Scholar 

  41. Yu Y, Wang Q, Yi L, Liu J (2014) Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Adv Eng Mater 16(2):255–262

    Article  CAS  Google Scholar 

  42. Scharmann F, Cherkashinin G, Breternitz V, Knedlik C, Hartung G, Weber T et al (2010) Viscosity effect on GaInSn studied by XPS. Surf Interface Anal 36(8):981–985

    Article  CAS  Google Scholar 

  43. Zhang J, Yao Y, Sheng L, Liu J (2015) Self-fueled biomimetic liquid metal mollusk. Adv Mater 27(16):2648–2655

    Article  CAS  Google Scholar 

  44. Ilyukhina A, Ilyukhin A, Shkolnikov E (2012) Hydrogen generation from water by means of activated aluminum. Int J Hydrogen Energy 37(21):16382–16387

    Article  CAS  Google Scholar 

  45. Wang L, Liu J (2015) Electromagnetic rotation of a liquid metal sphere or pool within a solution. Proc Royal Soc London 471(2178):20150177

    Article  Google Scholar 

  46. Tan SC, Gui H, Yuan B, Liu J (2015) Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Appl Phys Lett 107(7):071904

    Article  CAS  Google Scholar 

  47. Ma KQ, Liu J (2007) Nano liquid-metal fluid as ultimate coolant. Phys Lett A 361(3):252–256

    Article  CAS  Google Scholar 

  48. Chitambar CR (2010) Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 7(5):2337–2361

    Article  CAS  Google Scholar 

  49. Graf GG (2005) Tin, tin alloys, and tin compounds. Ullmann’s Encyclopedia of Industrial Chemistry

    Google Scholar 

  50. Tanaka A, Hirata M, Kiyohara Y, Nakano M, Omae K, Shiratani M et al (2010) Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films 518(11):2934–2936

    Article  CAS  Google Scholar 

  51. Cadwallader LC (2003) Gallium safety in the laboratory. Idaho National Laboratory

    Google Scholar 

  52. Dunne S, Abraham R (2000) Restorative dentistry: dental post-operative sensitivity associated with a gallium-based restorative material. Br Dent J 189(6):310–313

    CAS  Google Scholar 

  53. Serfontein W, Mekel R (1979) Bismuth toxicity in man ii. review of bismuth blood and urine levels in patients after administration of therapeutic bismuth formulations in relation to the problem of bismuth toxicity in man. Res Commun Chem Pathol Pharmacol 26(2):391–411

    CAS  Google Scholar 

  54. Remennik S, Bartsch I, Willbold E, Witte F, Shechtman D (2011) New, fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants. Mater Sci Eng, B 176(20):1653–1659

    Article  CAS  Google Scholar 

  55. Zhang Q, Zheng Y, Liu J (2012) Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4):311–340

    Article  Google Scholar 

  56. Kim HJ, Son C, Ziaie B (2008) A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl Phys Lett 92(1):011904

    Article  CAS  Google Scholar 

  57. Cheng S, Rydberg A, Hjort K, Wu Z (2009) Liquid metal stretchable unbalanced loop antenna. Appl Phys Lett 94(14):144103

    Article  CAS  Google Scholar 

  58. Kubo M, Li X, Kim C, Hashimoto M, Wiley BJ, Ham D et al (2010) Stretchable microfluidic radiofrequency antennas. Adv Mater 22(25):2749–2752

    Article  CAS  Google Scholar 

  59. Jeong SH, Hjort K, Wu Z (2014) Tape transfer printing of a liquid metal alloy for stretchable RF electronics. Sensors 14(9):16311–16321

    Article  CAS  Google Scholar 

  60. Nawaz AA, Mao X, Stratton ZS, Huang TJ (2013) Unconventional microfluidics: expanding the discipline. Lab Chip 13(8):1457–1463

    Article  CAS  Google Scholar 

  61. Jung T, Yang S (2015) Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel. Sensors 15(5):11823–11835

    Article  Google Scholar 

  62. Park YL, Majidi C, Kramer R, Bérard P, Wood RJ (2010) Hyperelastic pressure sensing with a liquid-embedded elastomer. J Micromech Microeng 20(12):125029

    Article  CAS  Google Scholar 

  63. Wong RDP, Posner JD, Santos VJ (2012) Flexible microfluidic normal force sensor skin for tactile feedback. Sens Actuators, A 179:62–69

    Article  CAS  Google Scholar 

  64. Shan W, Lu T, Majidi C (2013) Soft-matter composites with electrically tunable elastic rigidity. Smart Mater Struct 22(8):085005

    Article  CAS  Google Scholar 

  65. Gao Y, Li H, Liu J (2012) Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE 7(9):e45485

    Article  CAS  Google Scholar 

  66. Li H, Yang Y, Liu J (2012) Printable tiny thermocouple by liquid metal gallium and its matching metal. Appl Phys Lett 101(7):073511

    Article  CAS  Google Scholar 

  67. Mei S, Gao Y, Li H, Deng Z, Liu J (2013) Thermally induced porous structures in printed gallium coating to make transparent conductive film. Appl Phys Lett 102(4):041905

    Article  CAS  Google Scholar 

  68. Zhang Q, Gao Y, Liu J (2014) Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 116(3):1091–1097

    Article  CAS  Google Scholar 

  69. Boley JW, White EL, Chiu GTC, Kramer RK (2014) Direct writing of gallium-indium alloy for stretchable electronics. Adv Func Mater 24(23):3501–3507

    Article  CAS  Google Scholar 

  70. Zheng Y, Zhang Q, Liu J (2013) Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 3(11):112117

    Article  CAS  Google Scholar 

  71. Tabatabai A, Fassler A, Usiak C, Majidi C (2013) Liquid-phase gallium-indium alloy electronics with microcontact printing. Langmuir 29(20):6194–6200

    Article  CAS  Google Scholar 

  72. Zheng Y, He Z, Gao Y, Liu J (2013) Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep 3:1786-1-7

    Google Scholar 

  73. Wang L, Liu J (2014) Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Sci China Technol Sci 57(9):1721–1728

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Yi, L. (2018). Introduction. In: Liquid Metal Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-5607-9_1

Download citation

Publish with us

Policies and ethics