Skip to main content

Remote Sensing in Mineral Exploration

  • Chapter
  • First Online:
Mineral Exploration: Practical Application

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 2020 Accesses

Abstract

Remote sensing was first adopted as a technique for obtaining information of distance objects without being in physical contact to the object (Fisher in Manual of remote sensing. American society of photogrammetry, Falls Church, Virginia, pp 27–50, 1975). In practical terms remote sensing collects electromagnetic or acoustic signals (Gupta 1993). Earliest aerial were taken in 1858 from a balloon. However, since 1930 aerial photography using aircraft has been used extensively for resources survey. Satellite photography of the earth has been available to geologists since the early 1960s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Readings

  • Abrams MJ, Brown D, Lepley L, Sadowski R (1983) Remote sensing for porphyry copper deposits in southern Arizona. Econ Geol 78(4):591–604

    Article  Google Scholar 

  • Abrams M, Hook S, Ramachandran B (2002) ASTER user handbook (Ver. 2). Jet Propulsion Laboratory, California Institute of Technology, NASA, USA, p 135

    Google Scholar 

  • Bernstein R (1983) Image geometry and rectification. In: Colwell RN (ed) Manual of remote sensing, 2nd edn. American Society of Photogrammetry, Falls Church, Virginia, pp 873–922

    Google Scholar 

  • Chaves PS Jr, Berlin GL, Sowers LB (1982) Statistical method for selecting landsat MSS ratios. J Appl Photographic Eng 8:23–30

    Google Scholar 

  • Campbell JB (2007) Introduction to remote sensing. The Guilford Press, New York, p 626

    Google Scholar 

  • Carter WD, Rowen LC, Huntington JF (2013) Remote sensing in mineral exploration, Elsevier, Amsterdam, p. 186

    Google Scholar 

  • Crosta AP, De Souza Filho CR, Azevedo F, Brodie C (2003) Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 24(21):4233–4240

    Article  Google Scholar 

  • Crosta A, Moore J (1990) Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State, Brazil-A prospecting case history in greenstone belt terrain. In: Thematic conference on remote sensing for exploration geology—methods, integration, solutions, Calgary, Canada, pp 1173–1187

    Google Scholar 

  • Di Tommaso I, Rubinstein N (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol Rev 32(1):275–290

    Article  Google Scholar 

  • Dimitrijevic MD, Dimitrijevic MN, Djordjevic M, Vulovic D (1971) Geological map of the Pariz area, scale 1: 100,000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Drury SA, Hunt GA (1989) Geological uses of remotely-sensed reflected and emitted data of lateritized Archaean terrain in Western Australia. Int J Remote Sens 10(3):475–497

    Article  Google Scholar 

  • Drury SA (1993) Image interpretation in geology, 2nd edn. Allen and Unwin, London

    Google Scholar 

  • Economic Geology (1983) An issue devoted to techniques and results of remote sensing. 78:573–770

    Google Scholar 

  • Eklundh L, Singh A (1993) A comparative analysis of standardised and unstandardised principal components analysis in remote sensing. Int J Remote Sens 14(7):1359–1370

    Article  Google Scholar 

  • Fisher WA (1975) History of remote sensing. In: Reeves RG (ed) Manual of remote sensing. American Society Of Photogrametry, Falls Church, Virginia, pp 27–50

    Google Scholar 

  • Galvao LS, Formaggio AR, Tisot DA (2005) Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sens Environ 94(4):523–534

    Article  Google Scholar 

  • Govil H (2015) Identification and mapping of hydrothermally altered minerals in and around Askot base-metal mineralization of Kumoan Himalaya, India using EO-1 Hyperion data. Int J Adv Remote Sens GIS Geogr 3(1):1–8

    Google Scholar 

  • Gupta RP (2008) Remote sensing geology. Springer, Berlin, p 655

    Google Scholar 

  • Gupta RP (2013) Remote sensing geology. Springer Science & Business Media, Berlin

    Google Scholar 

  • Honarmand M, Ranjbar H, Shahabpour J (2011) Application of spectral analysis in mapping hydrothermal alteration of the Northwestern Part of the Kerman Cenozoic Magmatic Arc, Iran, Journal of Sciences, Islamic Republic of Iran, 22(3): 221-238

    Google Scholar 

  • Hubbard BE, Crowley JK (2005) Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: data dimensionality issues and solutions. Remote Sens Environ 99(1):173–186

    Article  Google Scholar 

  • Hunt GR (1977) Spectral signatures of particulate minerals in the visible and near-infrared. Geophysics 42:501–513

    Article  Google Scholar 

  • Hunt GR, Ashley RP (1979) Spectra of altered rocks in the visible and near infrared. Econ Geol 74:1612–1629

    Article  Google Scholar 

  • Hunt GR, Salisbury JW (1970) Visible and near-infrared spectra of minerals and rocks: I silicate minerals. Modern Geol 1:283–300

    Google Scholar 

  • Jensen JR (1996) Introductory digital image processing: a remote sensing approach. Prentice Hall, Upper Saddle River, NJ, p 7458

    Google Scholar 

  • Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44(2):145–163

    Article  Google Scholar 

  • Kruse FA, Boardman JW, Huntington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41(6):1388–1400

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW (2003) Remote sensing and image interpretation. Wiley, New Jersey, p 722

    Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2014) Remote sensing and image interpretation. Wiley, New Jersey

    Google Scholar 

  • Loughlin WP (1991) Principal component analysis for alteration mapping. Photogram Eng Remote Sens 57(9):1163–1169

    Google Scholar 

  • Lowman PD (1969) Geologic orbital photography, experience from the Gemini program. Photogrametrica 24:77–106

    Article  Google Scholar 

  • Mars JC, Rowan LC (2006) Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2(3):161–186

    Article  Google Scholar 

  • Mather PM (1987) Computer processing of remotely-sensed images, an introduction. Wiley, New York, p 352

    Google Scholar 

  • Navai I, Mehdizadeh-Tehrani S (1994) Alteration mapping by remote sensing techniques in south Iran, a case study. In: Proceedings of the 15th Asian conference on remote sensing, Bangalore, India

    Google Scholar 

  • Navalgund RR, Jayaraman V, Roy PS (2007) Remote sensing applications: an overview. Curr Sci 93(12):1747–1766

    Google Scholar 

  • Niblack W (1986) An introduction to digital image processing. Strandberg Publishing Company

    Google Scholar 

  • Rajendran S, Thirunavukkarasu A, Balamurugan G, Shankar K (2011) Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. J Asian Earth Sci 41(1):99–106

    Article  Google Scholar 

  • Rajendran S, Al-Khirbash S, Pracejus B, Nasir S, Al-Abri AH, Kusky TM, Ghulam A (2012) ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: exploration strategy. Ore Geol Rev 44:121–135

    Article  Google Scholar 

  • Ranjbar H (2011) Remote sensing, applications to geophysics. In: Encyclopedia of solid earth geophysics. Springer, Netherlands, pp 1035–1039

    Google Scholar 

  • Ranjbar H, Honarmand M (2007) Exploration for base metal mineralization in the southern part of the Central Iranian Volcanic Belt by using ASTER and ETM+ data. J Eng Sci 3:23–34

    Google Scholar 

  • Ranjbar H, Roonwal GS (2002) Digital image processing for lithological and alteration mapping, using spot multispectral data. A case study of Pariz area, Kerman Province. In: Proceedings of SPIE, remote sensing for environmental monitoring, GIS applications, and geology, Iran, vol 4545

    Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens Environ 84(3):350–366

    Article  Google Scholar 

  • Rowan LC, Schmidt RG, Mars JC (2006) Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sens Environ 104(1):74–87

    Article  Google Scholar 

  • Sabins FF (1999) Remote sensing for mineral exploration. Ore Geol Rev 14(3):157–183

    Article  Google Scholar 

  • Sanjeevi S (2008) Targeting limestone and bauxite deposits in southern India by spectral unmixing of hyperspectral image data. Int Arch Photogram Remote Sens Spat Inf Sci 37:1189–1194

    Google Scholar 

  • Shahriari H, Ranjbar H, Honarmand M (2013) Image segmentation for hydrothermal alteration mapping using PCA and concentration–area fractal model. Nat Resour Res 22(3):191–206

    Article  Google Scholar 

  • Tangestani MH, Moore F (2001) Porphyry copper potential mapping using the weights-of-evidence model in a GIS, northern Shahr-e-Babak, Iran. Aust J Earth Sci 48(5):695–701

    Article  Google Scholar 

  • Tangestani MH, Moore F (2002) Porphyry copper alteration mapping at the Meiduk area. Iran. International Journal of Remote Sensing 23(22):4815–4825

    Article  Google Scholar 

  • Tangestani MH, Mazhari N, Agar B, Moore F (2008) Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi-arid area, northern Shahr-e-Babak, SE Iran. Int J Remote Sens 29(10):2833–2850

    Article  Google Scholar 

  • Van der Meer FD, Van der Werff HM, van Ruitenbeek FJ, Hecker CA, Bakker WH, Noomen MF, Woldai T (2012) Multi-and hyperspectral geologic remote sensing: A review. Int J Appl Earth Obs Geoinf 14(1):112–128

    Article  Google Scholar 

  • Zhang X, Pazner M, Duke N (2007) Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J Photogram Remote Sens 62(4):271–282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Roonwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 SpringerNature Singapore Pte Ltd.

About this chapter

Cite this chapter

Roonwal, G.S. (2018). Remote Sensing in Mineral Exploration. In: Mineral Exploration: Practical Application. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5604-8_4

Download citation

Publish with us

Policies and ethics